EE 562

Homework 10

Due Wednesday, April 19, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Consider the mean square differential equation

$$\frac{dY(t)}{dt} + 2Y(t) = X(t)$$

for t > 0 subject to the initial condition Y(0) = 0. The input is

$$X(t) = 5\cos 2t + W(t)$$

where W(t) is a white Gaussian noise process with mean zero and covariance function $K_W(\tau) = \sigma^2 \delta(\tau)$. Find the covariance $K_Y(t_1, t_2)$ for $t_1, t_2 > 0$.

Solution:

First, we can take the first derivative of the original equation

$$\frac{\mathrm{d}\mu_Y(t_1)}{\mathrm{d}t_1} + 2\mu_Y(t_1) = \mu_X$$

Then, combine those two equations

$$\frac{d(Y(t_1) - \mu_Y(t_1))}{dt_1} + 2(Y(t_1) - \mu_Y(t_1)) = (X(t_1) - \mu_X)$$

Multiplying by $(X^*(t_2) - \mu_X^*)$ we get

$$\frac{d(Y(t_1) - \mu_Y(1))(X^*(t_2) - \mu_X^*)}{dt_1} + 2(Y(t_1) - \mu_Y(t_1))(X^*(t_2) - \mu_X^*)$$
$$= (X(t_1) - \mu_X)(X^*(t_2) - \mu_X^*)$$

Taking expectation on both sides this becomes

$$\frac{\partial K_{YX}(t_1, t_2)}{\partial t_1} + 2K_{YX}(t_1, t_2) = \sigma^2 \delta(t_1 - t_2)$$

with initial condition $K_{YX}(0, t_2) = 0$.

For $t_1 < t_2$ we get

$$\frac{\partial K_{YX}(t_1, t_2)}{\partial t_1} + 2K_{YX}(t_1, t_2) = 0$$

with initial condition $K_{YX}(0, t_2) = 0$ which implies $K_{YX}(t_1, t_2) = 0$. For $t_1 \ge t_2$ we get

$$\frac{\partial K_{YX}(t_1, t_2)}{\partial t_1} + 2K_{YX}(t_1, t_2) = \sigma^2 \delta(t_1 - t_2)$$

due to the jump of σ^2 at $t_1 = t_2$. Taking Laplace transforms we get

$$s_1 K_{YX}(s_1, t_2) + 2K_{YX}(s_1, t_2) = \sigma^2 e^{-s_1 t_2}$$

SO

$$K_{YX}(s_1, t_2) = \frac{\sigma^2}{s_1 + 2} e^{-s_1 t_2}$$

Hence

$$K_{YX}(t_1, t_2) = \sigma^2 e^{-2(t_1 - t_2)}$$

for $t_1 \geq t_2$ and is zero otherwise.

Repeating the above procedure but now multiplying by $(Y^*(t_2) - \mu_Y^*(t_2))$, we get,

$$\frac{\partial K_Y(t_1, t_2)}{\partial t_1} + 2K_Y(t_1, t_2) = K_{XY}(t_1, t_2)$$

with initial condition $K_Y(0, t_2) = 0$, or

$$\frac{\partial K_Y(t_1, t_2)}{\partial t_1} + 2K_Y(t_1, t_2) = K_{YX}(t_2, t_1)$$
$$= \sigma^2 e^{-2(t_2 - t_1)}$$

for $t_2 \ge t_1$ and is zero otherwise. So for $0 < t_1 \le t_2$

$$\frac{\partial K_Y(t_1, t_2)}{\partial t_1} + 2K_Y(t_1, t_2) = \sigma^2 e^{-2(t_2 - t_1)}$$

Taking Laplace transforms we get

$$s_1 K_Y(s_1, t_2) + 2K_Y(s_1, t_2) = \frac{\sigma^2 e^{-2t_2}}{s_1 - 2}$$

or

$$K_Y(s_1, t_2) = \frac{\sigma^2 e^{-2t_2}}{(s_1 - 2)(s_1 + 2)} = \frac{\sigma^2 e^{-2t_2}/4}{s_1 - 2} - \frac{\sigma^2 e^{-2t_2}/4}{s_1 + 2}$$

SO

$$K_Y(t_1, t_2) = \frac{\sigma^2}{4} e^{-2t_2} (e^{2t_1} - e^{-2t_1})$$

For $t_1 > t_2$

$$\frac{\partial K_Y(t_1, t_2)}{\partial t_1} + 2K_Y(t_1, t_2) = 0$$

Taking Laplace transforms we get

$$s_1 K_Y(s_1, t_2) - K_Y(t_2, t_2) e^{-s_1 t_2} + 2K_Y(s_1, t_2) = 0$$

or

$$s_1 K_Y(s_1, t_2) - \frac{\sigma^2}{4} (1 - e^{-4t_2}) e^{-s_1 t_2} + 2K_Y(s_1, t_2) = 0$$

SO

$$K_Y(s_1, t_2) = \frac{\sigma^2}{4} \frac{(1 - e^{-4t_2})}{s_1 + 2} e^{-s_1 t_2}$$

So taking the inverse transform we get

$$K_Y(t_1, t_2) = \frac{\sigma^2}{4} (1 - e^{-4t_2}) e^{-2(t_1 - t_2)}$$

Now let $t_2 = t$, $t_1 = t + \tau$. Then

$$K_Y(t+\tau,t) = \begin{cases} \frac{\sigma^2}{4} (1 - e^{-4t}) e^{-2\tau} & \tau > 0\\ \frac{\sigma^2}{4} e^{-2t} (e^{2(t+\tau)} - e^{-2(t+\tau)}) & \tau \le 0 \end{cases}$$

Problem 2. Suppose X is a Poisson random variable with parameter λ . Then

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Show that $E[X] = \lambda$ and $Var[X] = \lambda$.

Solution:

By definition, $E[X] = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^2}{k!} = e^{-\lambda} \lambda \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$. We can change the limit of summation by introducing k-1=l

$$E[X] = e^{-\lambda} \lambda \sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!} = e^{-\lambda} \lambda e^{\lambda} = \lambda$$

To find the variance, we can either calculate with direct derivation using definition, or use the Moment Generating function of Poisson RV

$$G(t) = e^{-\lambda} e^{\lambda e^t}$$

$$G'(t) = e^{-\lambda} \left(\lambda e^t e^{\lambda e^t} \right)$$

$$G''(t) = \lambda e^{-\lambda} \left[\left(1 + \lambda e^t \right) e^t e^{\lambda e^t} \right]$$

And we have $G''(0) = \lambda + \lambda^2$. Therefore $VAR = \lambda + \lambda^2 - \lambda^2 = \lambda$.

Problem 3. Let N(t) be a Poisson process with parameter λt . Find

$$E\left[\left(N(t)-N(s)\right)^2\right]$$

for t > s.

Solution:

We know that for a Poisson process,

$$E[N(t)] = \lambda t$$

$$E[N(t)^{2}] = \lambda t + \lambda^{2} t^{2}$$

Moreover, for t > s

$$E[N(t)N(s)] = E[\{N(s) + (N(t) - N(s))\}N(s)]$$

$$= E[N(s)^{2}] + E[N(t) - N(s)]E[N(s)]$$

$$= \lambda s + \lambda^{2}s^{2} + \lambda(t - s)\lambda s$$

$$= \lambda s + \lambda^{2}st$$

Therefore,

$$E[\{N(t) - N(s)\}^2] = E[N(t)^2] + E[N(s)^2] - 2E[N(t)N(s)]$$
$$= \lambda t + \lambda^2 t^2 + \lambda s + \lambda^2 s^2 - 2[\lambda s + \lambda^2 st]$$
$$= \lambda t - \lambda s + \lambda^2 t^2 + \lambda^2 s^2 - 2\lambda^2 st$$

Problem 4. Give an example of a random process that is WSS but not ergodic in mean.

Solution:

One example: X(t) = A for all t, where A is a zero-mean, unit variance random variable. X(t) at different times are uncorrelated. Mean function of X(t) is

$$\mu_X(t) = E[A] = 0$$

However, the time average of X(t) is

$$\langle X(t) \rangle_T = \frac{1}{2T} \int_{-T}^T A \, \mathrm{d}t = A$$

The time average does not always converges to 0.

Problem 5. Let X(t) be a WSS random process. Show that

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_x(t_1, t_2) = -\frac{d^2}{d\tau^2} R_x(\tau).$$

Solution:

Because X(t) is WSS, we have

$$R_X(t_1, t_2) = R_X(t_1 - t_2) = R_X(\tau)$$

We can make a change of variable $\tau=t_1-t_2$ and use the chain rule

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2) = \frac{\partial}{\partial t_1} \left[\frac{\partial R_X(t_1, t_2)}{\partial \tau} \frac{\partial \tau}{\partial t_2} \right]$$

$$= -\frac{\partial}{\partial t_1} \frac{\partial R_X(t_1, t_2)}{\partial \tau}$$

$$= -\frac{\partial}{\partial \tau} \frac{\partial R_X(t_1, t_2)}{\partial \tau} \frac{\partial t_1}{\partial \tau}$$

$$= -\frac{\partial^2 R_X(t_1, t_2)}{\partial \tau^2}$$

$$= -\frac{\mathrm{d}^2 R_X(\tau)}{\mathrm{d}\tau^2}$$