EE 562

Homework 6

Due Wednesday, March 1, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Let X_i , i = 1, ..., n be n random variables each with mean μ and variance σ^2 . Consider the sample mean defined as

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Show that $\hat{\mu}$ is not the MMSE of μ by finding a constant a such that for any finite n, $a\hat{\mu}$ generates a lower MMSE of μ .

Problem 2. Stark and Woods Problems 6.16 and 6.17. Note: The problem statements should refer to equation 6.4-2. These problems are repeated here. Let $X_1, \ldots X_n$ be n independent random variables each with mean μ and variance $\sigma^2 < \infty$. Let us estimate the variance as

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

- a. Show that $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .
- b. Show that this sample variance $\hat{\sigma}^2$ is consistent for σ^2 .

Problem 3. Let $\mathbf{X}(u)$ and $\mathbf{Y}(u)$ be random vectors related to each other by the equation

$$\mathbf{Y}(u) = \mathbf{G}\mathbf{X}(u)$$

where

$$\mathbf{G} = \begin{bmatrix} 6 & 2 & 3 & 0 \\ 1 & 6 & 2 & 3 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 6 \end{bmatrix}, \quad \mu_{\mathbf{X}} = 0, \quad \mathbf{K}_{\mathbf{X}} = \mathbf{I}.$$

a. Compute the LMMSE estimator of $\mathbf{S}(u) = \begin{bmatrix} X(u,3) \\ X(u,4) \end{bmatrix}$ given

$$\mathbf{R}(u) = \begin{bmatrix} Y(u,1) \\ Y(u,2) \end{bmatrix}.$$

- b. Compute the LMMSE estimator of $\mathbf{S}(u) = \begin{bmatrix} X(u,1) \\ X(u,2) \end{bmatrix}$ given $\mathbf{R}(u) = \begin{bmatrix} Y(u,3) \\ Y(u,4) \end{bmatrix}$.
- c. Compute the LMMSE estimator of $\mathbf{Y}(u)$ given $\mathbf{R}(u) = \begin{bmatrix} X(u,1) \\ X(u,2) \end{bmatrix}$.

Problem 4. Let X_1 , X_2 , X_3 be real random variables with known means $E[X_i] = \mu_i$ and variances $Var(X_i) = \sigma_i^2$, i = 1, 2, 3 and covariances $Cov(X_i, X_j) = \sigma_{ij}$, i, j = 1, 2, 3 for $i \neq j$ where

$$\sigma_2^2 = 1$$
, $\sigma_3^2 = 2$, $\sigma_{12} = 1/2$, $\sigma_{13} = 4/3$, $\sigma_{23} = 1$.

a. Consider \hat{X}_1 , the best linear predictor of X_1 given X_2, X_3 , in the form

$$\hat{X}_1 = \alpha_2(X_2 - \mu_2) + \alpha_3(X_3 - \mu_3) + \mu_1.$$

Find the numerical values of the coefficients α_2 and α_3 .

b. If the real vector (X_1, X_2, X_3) is multivariate normal with moments as given above, find $E[X_1|X_2, X_3]$, the conditional expectation of X_1 given X_2, X_3 .

Problem 5. Consider a real vector observation of the form

$$\mathbf{X}(u) = A(u)\mathbf{S} + \mathbf{n}(u)$$

where A(u) and $\mathbf{n}(u)$ are independent and the noise $\mathbf{n}(u)$ is mean zero with known covariance matrix $\mathbf{K_n}$. Also

$$P(A(u) = 1) = p, P(A(u) = -1) = 1 - p.$$

You may assume that K_X and K_n are nonsingular.

- a. Compute the LMMSE estimator of A(u) given the observation $\mathbf{X}(u)$.
- b. Compute the mean-square estimation error for your answer in part (a).