EE 562

Homework 5
Due Wednesday, February 22, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Let R;, i = 1,...,32 be 32 independent random variables
resulting from the envelope detection of a signal plus noise process. Assume
that each R; resulted from the envelope detection of a complex signal plus
noise component.

Assuming integration detection with N = 32 use Albersheim’s equation to
plot probability of detection (P;) vs. SNR (dB) for a probability of false
alarm (Py,) of 1076.

Solution:
We nned to plot SNR vs P; using Albersheim’s equation:

4.54

SNR = —5log, g N+ (6.2 4+ ——u
&10 ( VN +0.44

) -log,o (A + 0.12AB + 1.7B)

where A = log <0'62) B = log ( P;gd>. Figure [1| shows the plot for P; from

Pro) =
0.1 to 0.9(the range of P, for which Albersheim’s equation is a reasonable
approximation).



clear

N=16; Pfa=0.00001;

Pd=0.1:0.05:0.9;

A=10g(0.62/Pfa);B=log(Pd./(1-Pd));

SNR=-5*10g10 (N)+(6.2+4.54/sqrt (N+0.44))*10g10 (A+0.12*A.*B+1.7*B) ;
plot (SNR, Pd)

xlabel('SNR(db)");

ylabel('P_d")
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Figure 1: SNR vs Pd

Problem 2. Same setup as Problem 1. We know that the density of each
R; when no signal is present is

fr(r) == >0
where o2 is the total noise power.

With M of N detection a threshold is found for each of the 32 samples
as

Ty = \/—202 In(Pras)

where Py, s is the probability of false alarm on a sample basis that yields an
overall Py,.

a. Using

N
Pra= Y N pre (1 — Pp )V K
fa K fa,s fa,s

K=M
find Py, s that yields an overall Py, = 107° where M = 16 and N = 32.
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b. Using .
N
Pi= Y (K) PE(1— PV K

K=M

find Py s, the probability of detection on a sample basis, that yields an
overall P; = 0.9 where M = 16 and N = 32.

Solution:
In part (a) and (b), we need to invert the equations (with M = 16 and
N = 32):

N
P;, = N PE (1-p;, )VTE
fa_z K fzz,s( - fa,s)

K=m
N
N
P=Y (K>p;;<1_pd,s)N—K
K=M

in order to determine the Py, , such that Py, = 107% and such that P; = 0.9.
Such inversion is impossible analytically. We can instead find the roots of
the equations:

filz) =107 =) (g)xK(l — )V

K=m
N

fox) = 09— )" (g) K1 — )N K

K=m

which can be done numerically. (For example, you can use MATLAB’s fzero()
function to do this.) The required Pfa,s and Pd,s are:

P(fa,s) = 0.1367
P(d, s) = 0.596

Problem 3. Let {z,} be an orthonormal set in a pre-Hilbert (or inner
product space) H. Show for any = in H

Z| <z x> |? < ||z
n
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Recall that {z,} an orthonormal set means < x,,,z, >= 0 if m # n and
< Xy, Ty >= 1.
Solution:

N N N
O§Hx—z<x,xi>H2:<x—z<x,xi>$i,x—z<x,xj>a:j>
j=1

) ) 0

N N
=<ma>-Y <pp><wr>-Y < ><z,r> (2
i=1 j=1
N N
+Zz<x,xj>Tatj><xi,xj> (3)

i=1 j=1
SO

N
0< |J2])* =Y | <z >
=1

This last results holds for all N so

o0

Yol <za > <l

=1

Problem 4. Suppose X and Y are correlated Gaussian random variables
each with mean zero and unity variance with correlation coefficient p.

a. Write down the joint density of (X,Y).

b. Write down the 2 x 2 correlation matrix Rxy.
Solution:

a. The joint density of (X,Y) is
; exp (—;2 (x2 + y2) — pry)
2m\/1 — p? 2(1—p?)
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fx,y) =



b. The correlation matrix is

_(L »r
RXY_<P 1)

Problem 5. This is a continuation of Problem 4. Suppose we do not know
the underlying distribution for (X, Y’) but have 2-dim samples (Xy, Yz), k =
1,2,...n from the distribution. We wish to use these samples to estimate
the correlation matrix. For this problem you may assume that p = 0.5.

To generate X and Y in Matlab we may use the following technique. First,
use a Matlab function call to get a standard normal random deviate. Call
this X. Now get another standard normal random deviate. Call this Z. Now
let

Y =pX +1—-p2Z.
a. Verify (analytically) that Y is standard normal and E[XY] = p.
b. Using Matlab estimate the correlation matrix using n = 50. Then

subtract the actual correlation matrix found in Problem 4 (with p =

0.5) from your estimated correlation matrix. Call this matrix result
Eg.

c. Using n = 50 samples in part (b) your estimate of the correlation
matrix was a single result. Now repeat this process N = 1000 times
and compute the mean and variance of each entry of your 1000 Egr
matrices.

d. Repeat part (c) but now use n = 500 (N is still 1000).

e. Comment on how your mean and variance results compare when using

n = 50 and n = 500.

Solution:

a. Because Y is a linear combination of two independent Gaussian random
variable. Y is also a Gaussian random variable. E[Y| = pE[X] +
1 —p?E[Z] = 0 and Var(Y) = p*Var(X) + (1 — p*)Var(Z) = 1. So

Y is a standard norm random variable.

b.c. The solution is:



sample = 1000;

n = 50;

result = zeros(2,2,sample);
for i=l:sample

X = random('norm',0,1,[n,1]);
Z = random('norm',0,1,[n,1]);
Y = 0.5%X+sqrt(1-0.5%2)*Z;

R = corrcoef([X,Y]);

R t=1[1,0.5;0.5,1]1;

E r =R-R t;

result(:,:,i) = E r;

end
mean_matrix = mean(result,3)

mean matrix =

0 -0.0046
-0.0046 0

var_matrix = var(result,0,3)

var_matrix =

0 0.0114
0.0114 0

sample = 1000;
n = 500;

result = zeros(2,2,sample);
for i=1l:sample
random('norm',0,1,[n,1]);
random('norm',0,1,[n,1]1);
0.5*%X+sqrt(1-0.5"2)*Z;
corrcoef([X,Y]);

= [1,0.5;0.5,1];

= R-R_t;
ult(:,:,i) = E r;

m >0 X0 < N X
L e T I I (I ]

=
end
mean_matrix = mean(result,3)
mean_matrix =
1.0e-03 *
0

-0.4252
-0.4252 0

var_matrix = var(result,0,3)

var_matrix =

0 0.0011
0.0011 0



d. The mean and variance both get smaller when n is larger. This is
basically the central limit theorem.



