
EE 562
Homework 5

Due Wednesday, February 22, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Let Ri, i = 1, . . . , 32 be 32 independent random variables
resulting from the envelope detection of a signal plus noise process. Assume
that each Ri resulted from the envelope detection of a complex signal plus
noise component.

Assuming integration detection with N = 32 use Albersheim’s equation to
plot probability of detection (Pd) vs. SNR (dB) for a probability of false
alarm (Pfa) of 10−6.

Solution:
We nned to plot SNR vs Pd using Albersheim’s equation:

SNR = −5 log10N +

(
6.2 +

4.54√
N + 0.44

)
· log10 (A+ 0.12AB + 1.7B)

where A = log
(

0.62
Pfa

)
,B = log

(
Pd

1−Pd

)
. Figure 1 shows the plot for Pd from

0.1 to 0.9(the range of Pd for which Albersheim’s equation is a reasonable
approximation).
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Figure 1: SNR vs Pd

Problem 2. Same setup as Problem 1. We know that the density of each
Ri when no signal is present is

fRi
(r) =

r

σ2
e−r

2/2σ2

, r ≥ 0

where σ2 is the total noise power.

With M of N detection a threshold is found for each of the 32 samples
as

T0 =
√
−2σ2 ln(Pfa,s)

where Pfa,s is the probability of false alarm on a sample basis that yields an
overall Pfa.

a. Using

Pfa =
N∑

K=M

(
N

K

)
PK
fa,s(1− Pfa,s)N−K

find Pfa,s that yields an overall Pfa = 10−6 where M = 16 and N = 32.
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b. Using

Pd =
N∑

K=M

(
N

K

)
PK
d,s(1− Pd,s)N−K

find Pd,s, the probability of detection on a sample basis, that yields an
overall Pd = 0.9 where M = 16 and N = 32.

Solution:
In part (a) and (b), we need to invert the equations (with M = 16 and
N = 32):

Pfa =
N∑

K=m

(
N

K

)
PK
fa,s(1− Pfa,s)

N−K

Pd =
N∑

K=M

(
N

K

)
PK
d,s(1− Pd,s)

N−K

in order to determine the Pfa,s such that Pfa = 10−6 and such that Pd = 0.9.
Such inversion is impossible analytically. We can instead find the roots of
the equations:

f1(x) = 10−6 −
∑
K=m

(
N

K

)
xK(1− x)N−K

f2(x) = 0.9−
N∑

K=m

(
N

K

)
xK(1− x)N−K

which can be done numerically. (For example, you can use MATLAB’s fzero()
function to do this.) The required P fa,s and Pd,s are:

P (fa, s) = 0.1367

P (d, s) = 0.596

Problem 3. Let {xn} be an orthonormal set in a pre-Hilbert (or inner
product space) H. Show for any x in H∑

n

| < x, xn > |2 ≤ ||x||2.
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Recall that {xn} an orthonormal set means < xm, xn >= 0 if m 6= n and
< xn, xn >= 1.
Solution:

0 ≤ ||x−
N∑
i=1

< x, xi > ||2 =< x−
N∑
i=1

< x, xi > xi, x−
N∑
j=1

< x, xj > xj >

(1)

=< x, x > −
N∑
i=1

< x, xi >< xi, x > −
N∑
j=1

< x, xj > < xj, x > (2)

+
N∑
i=1

N∑
j=1

< x, xj > < x, xj > < xi, xj > (3)

so

0 ≤ ||x||2 −
N∑
i=1

| < x, xi > |2

This last results holds for all N so

∞∑
i=1

| < x, xi > |2 ≤ ||x||2

Problem 4. Suppose X and Y are correlated Gaussian random variables
each with mean zero and unity variance with correlation coefficient ρ.

a. Write down the joint density of (X, Y ).

b. Write down the 2× 2 correlation matrix RXY.

Solution:

a. The joint density of (X, Y ) is

f(x, y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(
x2 + y2

)
− 2ρxy

)
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b. The correlation matrix is

RXY =

(
1 ρ
ρ 1

)
Problem 5. This is a continuation of Problem 4. Suppose we do not know
the underlying distribution for (X, Y ) but have 2-dim samples (Xk, Yk), k =
1, 2, . . . n from the distribution. We wish to use these samples to estimate
the correlation matrix. For this problem you may assume that ρ = 0.5.

To generate X and Y in Matlab we may use the following technique. First,
use a Matlab function call to get a standard normal random deviate. Call
this X. Now get another standard normal random deviate. Call this Z. Now
let

Y = ρX +
√

1− ρ2Z.

a. Verify (analytically) that Y is standard normal and E[XY ] = ρ.

b. Using Matlab estimate the correlation matrix using n = 50. Then
subtract the actual correlation matrix found in Problem 4 (with ρ =
0.5) from your estimated correlation matrix. Call this matrix result
ER.

c. Using n = 50 samples in part (b) your estimate of the correlation
matrix was a single result. Now repeat this process N = 1000 times
and compute the mean and variance of each entry of your 1000 ER

matrices.

d. Repeat part (c) but now use n = 500 (N is still 1000).

e. Comment on how your mean and variance results compare when using
n = 50 and n = 500.

Solution:

a. Because Y is a linear combination of two independent Gaussian random
variable. Y is also a Gaussian random variable. E[Y ] = ρE[X] +√

1− ρ2E[Z] = 0 and Var(Y ) = ρ2Var(X) + (1− ρ2)Var(Z) = 1. So
Y is a standard norm random variable.

b.c. The solution is:
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sample = 1000;
n = 50;
result = zeros(2,2,sample);
for i=1:sample
    X = random('norm',0,1,[n,1]);
    Z = random('norm',0,1,[n,1]);
    Y = 0.5*X+sqrt(1-0.5^2)*Z;
    R = corrcoef([X,Y]);
    R_t = [1,0.5;0.5,1];
    E_r = R-R_t;
    result(:,:,i) = E_r;
end
mean_matrix = mean(result,3)

mean_matrix = 

         0   -0.0046
   -0.0046         0

var_matrix = var(result,0,3)

var_matrix = 

         0    0.0114
    0.0114         0

sample = 1000;
n = 500;
result = zeros(2,2,sample);
for i=1:sample
    X = random('norm',0,1,[n,1]);
    Z = random('norm',0,1,[n,1]);
    Y = 0.5*X+sqrt(1-0.5^2)*Z;
    R = corrcoef([X,Y]);
    R_t = [1,0.5;0.5,1];
    E_r = R-R_t;
    result(:,:,i) = E_r;
end
mean_matrix = mean(result,3)

mean_matrix = 

   1.0e-03 *
         0   -0.4252
   -0.4252         0

var_matrix = var(result,0,3)

var_matrix = 

         0    0.0011
    0.0011         0
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d. The mean and variance both get smaller when n is larger. This is
basically the central limit theorem.
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