EE 562

Homework 2
Due Wednesday, February 1, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Are there any real values of § that would permit the following
matrix to be a correlation matrix? If so, find them. If not, show why not.

3-8 2
A:[ 2 1+ﬁ}

Solution:

There is only one such 5. To see this, we need to do an eigen-decomposition
on matrix A. because A is positive semi-definite, all the two eigenvalues
should be non-negative. The eigen-equation is

A-)N=0
which can be written explicitly

35—\ 2

2 1+8-x""Y

By solving the equation, we know the two eigenvalues are
M=2—5-28+p0% N=2+/5-28+p?
Because \; > 0, Ay > 0, we have
2>5-28+0>= (B—-1)"<0
The only 8 which satisfy the inequality is g = 1.
Problem 2. Let W(u) be a white random vector with
pw =0 0 0, Ky=1L

Let
X(u) = HW(u) + c.



Find c and a causal matrix H using the direct method that produces
111
px =112 3", Ky=|1 2 2
1 26

Solution: First we can calculate pux
pux = E(HW + ¢) = ux = Huw + ¢

So,c=pux=[0 0 0.
From the previous homework, we know Kx = HKwH' = HH'. The proce-
dure of direct method is

ki = |h11|2 = hn =1

kia = hi1hy, = ho1 =1

kis = hiihy, = hg1 =1

kg = ’h21‘2 + ’h22‘2 = hay =1

kag = ho1hiy + haohiy == hss =1

Fgg = |haa|* + [hoa| + |has|? = hay = 2

So the matrix H is

1 00
H=1|1 10
1 1 2
Problem 3. Stark and Woods 5.29.
Solution:
Mean:
E[Y]=ATEX]|+ B
=32
Variance:
oy = ATKxA
=25



Problem 4. Stark and Woods 5.34.

Solution: Let z(x) be an n-dimensional vector of mean-zero real Gaussian
random variables. The expected value of the product of the random vari-
ables in this vector can be computed by appropriate differentiation of the
characteristic function of this Gaussian random vector.

ﬁx(,u,t) = (_Z)nLE exp izn:vtx(:uvt)
vy ...0v,

t=1
The characteristic function can be substituted into this expression and the
partial derivative calculated in an organized fashion.
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Now the differentiation process reduces to differentiating products of the form

n

— nt
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where n,; simply counts the number o times that v; occurs in the product on
the left side. It follows immediately that
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Only the term with m = n/2 can be non-zero because each of the m quadratic
forms in second equation contributes two v variables, and furthermore, the
expected value of the product must be zero when n is odd. Continuing on

v=0

v=0



the case in which n is even, the second equation can be reduced using the
third one.
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where 7 is the set of n-tuple in which each integer from 1 to n occurs exactly
once. The above expression can be simplified further because the same fac-
tors occur in the product for different n-tuples from Z. In fact, each possible
product occurs exactly 2%/2(n/2)! times one the right hand side of the expres-
sion. Taking advantage of this property leads to the following end results:
Let z(p,t),t = 1,2,...,n be mean-zero jointly Gaussian, real random vari-
ables. Let J be the collection of all unordered sequences of all unordered
pairs, wich each sequence containing each integer from 1 to n exactly once.
Than, for even n,

E

n n/2
Hx(,u,t)] = Z HKX(j87ks)

t=1 (j17k17---7jn/27kn/2>EJ s=1

The number of n possible pairings of n integers, i.e., the size of 7, is Wilﬂ)!’
and this number grows quite rapidly as n increases through the even integers.

For example, for real mean-zero Gaussian random variables

[z t)] = Ky (1,2)Kx(3,4) + Ky (1,3)Ky(2,4) + Ky (1,4)Ky(2,3)

t=1

E

Problem 5. Let X(u) be an n-dimensional random vector with covariance
matrix Kx and correlation matrix Ry. Let (\;, €;), i = 1,2,...,n denote
the eigenvalue and eigenvector pairs of the covariance matrix Ky, with the
eigenvectors chosen to form an orthonormal set.

a. If Kx is non-singular, can Rx be singular? Why or why not?

b. Show Kx can be written in the form

n
KX = Z )\ieie;r.
=1

4



c. Construct an example in which Ry is non-singular but Kx is singular.

d. Construct an example in which Kx and Ry are both singular but
px # 0.

e. Verify that
Ky i pk Ky

Ry =K' — :
1+ e Ky ax

Solution:

a.

Let Kx = EAE" and let ux = > pie;. Since {e;}._, span the space of
n dimensional column vectors this representation of ux is always possible.
Using this fact,

RX = EAET + /vLXM;(
— EA'E'
where A’ is the diagonal matrix with X, = X; + [|:]|°. If \; # 0 then X, # 0
since ||]|* > 0. Thus, if Kx is nonsingular, Rx is also nonsingular.
b.
Again let Kx = EAEf. Let A; be the matrix with the (7,7)-th element equal

to A; and all other elements equal to zero. Clearly, A =>"" | A;. Using this
fact,

Kx = EAE}
oo
i=1
i=1
= i /\ieiez
i=1

c,d.
We can use what we learned in part a) to find a simple example. Consider
the following matrix:
9 3
S

5



which has the eigen-decomposition A\; = 10,e; = J%[3’ 1]T;)\2 = 0,ey =

\/Ll—o[l, —3]". Since Ay = 0,Kx is singular. If we let yx = v/10e, then:
- + {10 0
which is non-singular. Alternatively, if we let ux = v/10e; then:

18 6

which is singular.
e.
We want to show that

Ky ik K

R;(:l — K;{l .
1+ Ky px

We first multiply both sides by Rx = Kx + ,ux,u; to get:

Ky ix i + Kx il K ix e
1+ Ky ix

I=T+Ky'uxpy -

Since b Kxtix is a scalar, we can factor to obtain:

p 1+ ik Kx ix
1+ pk Ky px

= T+ Ky pxpk — Ky ik

~1

I=1+Ky' uxpk — Kx'uxp

which completes the proof.



