
EE 562
Homework 2

Due Wednesday, February 1, 2017 at 6:40 p.m.

Work all 5 problems.

Problem 1. Are there any real values of β that would permit the following
matrix to be a correlation matrix? If so, find them. If not, show why not.

A =

[
3− β 2
2 1 + β

]
.

Solution:
There is only one such β. To see this, we need to do an eigen-decomposition
on matrix A. because A is positive semi-definite, all the two eigenvalues
should be non-negative. The eigen-equation is

A− λI = 0

which can be written explicitly∣∣∣∣3− β − λ 2
2 1 + β − λ

∣∣∣∣ = 0

By solving the equation, we know the two eigenvalues are

λ1 = 2−
√

5− 2β + β2 λ2 = 2 +
√

5− 2β + β2

Because λ1 ≥ 0, λ2 ≥ 0, we have

2 ≥
√

5− 2β + β2 =⇒ (β − 1)2 ≤ 0

The only β which satisfy the inequality is β = 1.

Problem 2. Let W(u) be a white random vector with

µW = (0 0 0)t, KW = I.

Let
X(u) = HW(u) + c.
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Find c and a causal matrix H using the direct method that produces

µX = [1 2 3]T , KX =

1 1 1
1 2 2
1 2 6

 .

Solution: First we can calculate µX

µX = E(HW + c) =⇒ µX = HµW + c

So, c = µX = [0 0 0]T .
From the previous homework, we know KX = HKWH† = HH†. The proce-
dure of direct method is

k11 = |h11|2 =⇒ h11 = 1

k12 = h11h
∗
21 =⇒ h21 = 1

k13 = h11h
∗
31 =⇒ h31 = 1

k22 = |h21|2 + |h22|2 =⇒ h22 = 1

k23 = h21h
∗
31 + h22h

∗
32 =⇒ h32 = 1

k33 = |h11|2 + |h22|2 + |h33|2 =⇒ h33 = 2

So the matrix H is

H =

1 0 0
1 1 0
1 1 2


Problem 3. Stark and Woods 5.29.
Solution:
Mean:

E[Y ] = ATE[X] +B

= 32

Variance:

σY = ATKXA

= 25
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Problem 4. Stark and Woods 5.34.
Solution: Let x(µ) be an n-dimensional vector of mean-zero real Gaussian
random variables. The expected value of the product of the random vari-
ables in this vector can be computed by appropriate differentiation of the
characteristic function of this Gaussian random vector.

E

[
n∏

t=1

x(µ, t)

]
= (−i)n

∂n

∂v1 . . . ∂vn
E

[
exp

(
i

n∑
t=1

vtx(µ, t)

)]∣∣∣∣∣
v=0

The characteristic function can be substituted into this expression and the
partial derivative calculated in an organized fashion.

E

[
n∏

t=1

x(µ, t)

]
= (−i)n

[
∂n

∂v1 . . . ∂vn
exp
(
−vtKxv/2

)]∣∣∣∣
v=0

= (−i)n
[

∂n

∂v1 . . . ∂vn

∞∑
m=0

(−1)m

2mm!

(
−vtKxv

)m]∣∣∣∣∣
v=0

= (−i)n
∞∑

m=0

(−1)m

2mm!

[
∂n

∂v1 . . . ∂vn

(
n∑

j1=1

n∑
k1=1

vj1vk1Kx(j1, k1)

)

. . .

(
n∑

jm=1

n∑
km=1

vjmvkmKx(jm, km)

)]∣∣∣∣∣
v=0

Now the differentiation process reduces to differentiating products of the form

vj1vk1vj2vk2 . . . vjmvkm =
n∏

t=1

vnt
t

where nt simply counts the number o times that vt occurs in the product on
the left side. It follows immediately that[

∂n

∂v1 . . . ∂vn
vj1vk1vj2vk2 . . . vjmvkm

]∣∣∣∣
v=0

=
n∏

t=1

[
∂

∂vt
vnt
t

]∣∣∣∣
v=0

Only the term withm = n/2 can be non-zero because each of the m quadratic
forms in second equation contributes two v variables, and furthermore, the
expected value of the product must be zero when n is odd. Continuing on
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the case in which n is even, the second equation can be reduced using the
third one.

E

[
n∏

t=1

x(µ, t)

]
=

1

2n/2(n/2)!

∑
(j1,k1,...,jn/2,kn/2)∈I

n/2∏
s=1

Kx(js, ks)

where I is the set of n-tuple in which each integer from 1 to n occurs exactly
once. The above expression can be simplified further because the same fac-
tors occur in the product for different n-tuples from I. In fact, each possible
product occurs exactly 2n/2(n/2)! times one the right hand side of the expres-
sion. Taking advantage of this property leads to the following end results:
Let x(µ, t), t = 1, 2, . . . , n be mean-zero jointly Gaussian, real random vari-
ables. Let J be the collection of all unordered sequences of all unordered
pairs, wich each sequence containing each integer from 1 to n exactly once.
Than, for even n,

E

[
n∏

t=1

x(µ, t)

]
=

∑
(j1,k1,...,jn/2,kn/2)∈J

n/2∏
s=1

Kx(js, ks)

The number of n possible pairings of n integers, i.e., the size of J , is n!
2n/2(n/2)!

,

and this number grows quite rapidly as n increases through the even integers.
For example, for real mean-zero Gaussian random variables

E

[
4∏

t=1

x(µ, t)

]
= Kx(1, 2)Kx(3, 4) +Kx(1, 3)Kx(2, 4) +Kx(1, 4)Kx(2, 3)

Problem 5. Let X(u) be an n-dimensional random vector with covariance
matrix KX and correlation matrix RX . Let (λi, ei), i = 1, 2, . . . , n denote
the eigenvalue and eigenvector pairs of the covariance matrix KX , with the
eigenvectors chosen to form an orthonormal set.

a. If KX is non-singular, can RX be singular? Why or why not?

b. Show KX can be written in the form

KX =
n∑

i=1

λieie
†
i .
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c. Construct an example in which RX is non-singular but KX is singular.

d. Construct an example in which KX and RX are both singular but
µX ̸= 0.

e. Verify that

R−1
X = K−1

X − K−1
X µXµ

†
XK

−1
X

1 + µ†
XK

−1
X µX

.

Solution:
a.
Let KX = EΛE† and let µX =

∑n
i=1 µiei. Since {ei}ni=1 span the space of

n dimensional column vectors this representation of µX is always possible.
Using this fact,

RX = EΛE† + µXµ
†
X

= EΛ′E
†

where Λ′ is the diagonal matrix with λ′
i = λi + ∥µi∥2. If λi ̸= 0 then λ′

i ̸= 0
since ∥µi∥2 > 0. Thus, if KX is nonsingular, RX is also nonsingular.
b.
Again let KX = EΛE†. Let Λi be the matrix with the (i, i)-th element equal
to λi and all other elements equal to zero. Clearly, Λ =

∑n
i=1 Λi. Using this

fact,

KX = EΛE†

= E

(
n∑

i=1

Λi

)
E†

= E

(
n∑

i=1

λie
†
i

)

=
n∑

i=1

λieie
†
i

c,d.
We can use what we learned in part a) to find a simple example. Consider
the following matrix:

KX =

[
9 3
3 1

]
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which has the eigen-decomposition λ1 = 10, e1 = 1√
10
[3, 1]T ;λ2 = 0, e2 =

1√
10
[1,−3]T . Since λ2 = 0,KX is singular. If we let µX =

√
10e2 then:

RX = KX + µXµ
†
X =

[
10 0
0 10

]
which is non-singular. Alternatively, if we let µX =

√
10e1 then:

RX = KX + µXµ
†
X =

[
18 6
6 2

]
which is singular.
e.
We want to show that

R−1
X = K−1

X − K−1
X µXµ

†
XK

−1
X

1+ µ†
XK

−1
X µX

We first multiply both sides by RX = KX + µXµ
†
X to get:

I = I+K−1
X µXµ

†
X − K−1

X µXµ
†
X +K−1

X µXµ
†
XK

−1
X µXµ

†
X

1+ µ†
XK

−1
X µX

Since µ†
XK

−1
X µX is a scalar, we can factor to obtain:

I = I+K−1
X µXµ

†
X −K−1

X µXµ
†
X

1+ µ†
XK

−1
X µX

1+ µ†
XK

−1
X µX

= I+K−1
X µXµ

†
X −K−1

X µXµ
†
X

= I

which completes the proof.
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