
25.0 Bandpass Systems

25.1 Representations of Bandpass Systems

Let s(t) be real-valued.

s(t) = a(t) cos[2πfct + θ(t)] (1)

a(t) = amplitude (or envelope) of s(t)

θ(t) = phase of s(t)

fc = carrier frequency of s(t)

If bandwidth is much smaller than fc, we have a bandpass system.

s(t) = a(t) cos(θ(t)) cos(2πfct)− a(t) sin(θ(t)) sin(2πfct)

= x(t) cos(2πfct)− y(t) sin(2πfct) (2)

x(t) = a(t) cos(θ(t)) −→ in phase component

y(t) = a(t) sin(θ(t)) −→ quadrature component

x(t) and y(t) are low-pass signals, since their frequency component is con-
centrated around f = 0.
Let

u(t) = a(t)eiθ(t)

= x(t) + iy(t)

Then,
s(t) = Re{u(t)ei2πfct} (3)

So, s(t) has the 3 representations shown above in (1), (2) and (3)

S(f) =
∫

∞

−∞

s(t)e−i2πftdt

=
∫

∞

−∞

{Re[u(t)ei2πfct]}e−i2πftdt

=
1

2

∫
∞

−∞

[u(t)ei2πfct + u∗(t)e−i2πfct]e−i2πftdt
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=
1

2
[U(f − fc) + U∗(−f − fc)]

where, u(t)
F.T.
←→ U(f)

Since frequency content of s(t) is concentrated around fc, we see that the
frequency content of u(t) is around f = 0. So, the complex valued waveform
u(t) is a low-pass signal waveform and is called the equivalent low-pass signal

The energy in s(t) is

ξ =
∫

∞

−∞

s2(t)dt

=
∫

∞

−∞

{Re[u(t)ei2πfct]}2dt

=
1

2

∫
∞

−∞

|u(t)|2dt +
1

2

∫
∞

−∞

|u(t)|2 cos[4πfct + 2θ(t)]dt
︸ ︷︷ ︸

small compared to the 1st integral

So,

ξ ≈
1

2

∫
∞

−∞

|u(t)|2dt

where, |u(t)| = a(t), the envelope.

25.2 Representations of Linear Bandpass Systems

Here h(t) is real, so
H∗(−f) = H(f)

Define,

C(f − fc) =







H(f), f > 0

0, f < 0.

Then,

C∗(−f − fc) =







0, f > 0

H∗(−f), f < 0.

So,
H(f) = C(f − fc) + C∗(−f − fc)
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=⇒ h(t) = c(t)ei2πfct + c∗(t)e−i2πfct

= 2Re[c(t)ei2πfct]

Here, c(t) is the impulse response of the equivalent low-pass system and is
complex.

A filter that is encounted in the generation of single-sideband signal has
the impulse resonse,

h(t) =
1

πt

=⇒ H(f) =







−i, f > 0

i, f < 0.

H(f) represents an all-pass filter which introduces a −90o phase shift for
f < 0.
The output is (for input s(t))

r(t) =
1

π

∫
∞

−∞

s(τ )

t− τ
dτ

This is called a Hilbert transform −→ output = ŝ(t)

25.3 Response of a Bandpass System to a Bandpass Signal

So far we have seen that a narrowband bandpass signal and system can be
represented by equivalent low-pass signals and systems.

We want to look at the output,

s(t) = Re[u(t)ei2πfct]

h(t) = 2Re[c(t)ei2πfct]

r(t) = Re[v(t)ei2πfct], some v(t)

where,

r(t) =
∫

∞

−∞

s(τ )h(t− τ )dτ
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R(f) = S(f)H(f)

Or,

R(f) =
1

2
[U(f − fc) + U∗(−f − fc)][C(f − fc) + C∗(−f − fc)]

where s(t) is a narrowband signal and h(t) is the impulse response of a nar-
rowband system

U(f − fc) ≈ 0 for f < 0 and C(f − fc) = 0 for f < 0.

So,
U(f − fc)C∗(−f − fc) = 0

and,
U∗(−f − fc)C(f − fc) = 0

So,

R(f) =
1

2
[U(f − fc)C(f − fc) + U∗(−f − fc)C

∗(−f − fc)]

=
1

2
[V (f − fc) + V ∗(−f − fc)]

where V (f) = U(f)C(f) is the output spectrum of the equivalent low-pass
system excited by the equivalent low-pass signal.
So,

v(t) = u(t) ∗ c(t)

or,

v(t) =
∫

∞

−∞

u(τ )c(t− τ )dτ

These relationships between bandpass and equivalent low-pass signals allow
us to ignore any linear frequency translations encountered in the modulation
of a signal for the purpose of matching its spectral content to the frequency
allocation of a particular channel.
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25.4 Representations of Bandpass Stationary Stochastic Processes

Let n(t) be a WSS stochastic process with zero mean.

n(t) = a(t) cos[2πfct + θ(t)]

= x(t) cos 2πfct− y(t) sin 2πfct

= Re[z(t)ei2πfct]

a(t) = envelope

z(t) = x(t) + iy(t) (complex envelope)

E[n(t)] = 0 =⇒ E[x(t)] = E[y(t)] = 0

Claim
RX(τ ) = RY (τ )

RXY (τ ) = −RY X(τ )

Proof
Rn(τ ) = E[n(t)n(t− τ )]

= E[(x(t) cos2πfct−y(t) sin2πfct)(x(t−τ ) cos2πfc(t−τ )−y(t−τ ) sin2πfc(t−τ ))]

= RX(τ ) cos 2πfct cos 2πfc(t− τ )

+RY (τ ) sin 2πfct sin 2πfc(t− τ )

−RY X(τ ) sin 2πfct cos 2πfc(t− τ )

−RXY (τ ) cos 2πfct sin 2πfc(t− τ )

Use

cos A cosB =
1

2
[cos(A− B) + cos(A + B)]

sinA sinB =
1

2
[cos(A− B)− cos(A + B)]

sinA cos B =
1

2
[sin(A− B) + sin(A + B)]

Rn(τ ) =
1

2
[RX(τ ) + RY (τ )] cos 2πfcτ
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+
1

2
[RX(τ )− RY (τ )] cos 2πfc(2t− τ )

−
1

2
[RY X(τ ) + RXY (τ )] sin 2πfcτ

−
1

2
[RY X(τ ) + RXY (τ )] sin 2πfc(2t− τ )

RHS must be independent of t for n(t) to be WSS.

=⇒ RX(τ ) = RY (τ )

RXY (τ ) = −RY X(τ )

Thus,
Rn(τ ) = RX(τ ) cos 2πfcτ − RY X(τ ) sin 2πfcτ

The autocorrelation function of the equivalent low-pass process

z(t) = x(t) + iy(t)

is defined as

RZ(τ ) =
1

2
E[z(t)z∗(t + τ )]

=
1

2
[RX(τ ) + RY (τ )− iRXY (τ ) + iRY X(τ )]

= RX(τ ) + iRY X(τ )

So,
Rn(τ ) = Re[Rz(τ )ei2πfcτ ]

Thus, the autocorrelation function Rn(τ ) of the bandpass stochastic process
is determined from RZ(τ ), the autocorrelation function of the equivalent low-
pass process z(t) and the carrier frequency fc.
Now,

Sn(f) =
∫

∞

−∞

{Re[RZ(τ )ei2πfcτ ]}e−i2πfcτdτ

=
1

2
[SZ(f − fc) + SZ(−f − fc)]
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25.4.1 Properties of the In-Phase and Quadrature Components

Since
RXY (τ ) = −RY X(τ )

and
RY X(τ ) = RXY (−τ )

We get
RXY (τ ) = −RXY (−τ )

=⇒ RXY (τ ) is an odd function of τ

So,
RXY (0) = 0 =⇒ x(t) and y(t) are uncorrelated for τ = 0.

If n(t) is a Gaussian process, then x(t + τ ) and y(t) are jointly Gaussian and
for τ = 0 they are uncorrelated =⇒ independent.
So, in this case their joint pdf is

f(x, y) =
1

2πσ2
e
−

x
2
+y

2

2σ2

where σ2 = RX(0) = RY (0) = Rn(0)

25.4.2 Representation of White Noise

The noise resulting from passing white noise through a spectrally flat (ideal)
bandpass filter is termed bandpass white noise.
The equivalent low-pass noise z(t) has

SZ(f) =







No, |f | ≤
B

2

0, |f | > B
2
.

=⇒ RZ(τ ) = No

sinπBτ

πτ
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As B →∞
RZ(τ ) −→ Noδ(τ )

The power spectral density for white noise and bandpass white noise is sym-
metric about f = 0, so RY X(τ ) = 0 ∀ τ .
Thus,

RZ(τ ) = RX(τ ) = RY (τ )

=⇒ x(t) and y(t) are uncorrelated for all time shifts τ and the autocorrelation
functions of z(t), x(t) and y(t) are all equal.
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