25.0 Bandpass Systems

25.1 Representations of Bandpass Systems

Let s(t) be real-valued.
s(t) = a(t) cos2m f.t + O(1)] (1)

a(t) = amplitude (or envelope) of s(t)
0(t) = phase of s(t)
fe = carrier frequency of s(t)

If bandwidth is much smaller than f., we have a bandpass system.
s(t) = a(t) cos(0(t)) cos(2m fet) — a(t) sin(0(t)) sin(27 f.t)

= z(t) cos(2m fot) — y(t) sin(27 f..t) (2)
x(t) = a(t)cos(0(t)) —  in phase component
y(t) = a(t)sin(0(t)) —  quadrature component

x(t) and y(t) are low-pass signals, since their frequency component is con-
centrated around f = 0.
Let

u(t) = a(t)e®®

= 2(t) + iy(t)

Then, '
s(t) = Re{u(t)e™™*'} (3)

So, s(t) has the 3 representations shown above in (1), (2) and (3)
S(f) = / T s(t)e2 Tt
= [ {Relu(tye ety

1 foo , . .
— 5‘/ [u(t)ez27rfct + u* (t)e—z27rfct]6—z27rftdt



= S0 = R+ U (~F ~ 1)

where, u(t) =L v(f)

Since frequency content of s(t) is concentrated around f., we see that the
frequency content of u(t) is around f = 0. So, the complex valued waveform
u(t) is a low-pass signal waveform and is called the equivalent low-pass signal

£= /_Z s2(t)dt

— [ {Relu(t)e™ )t

The energy in s(t) is

=3 / t)Pdt + = / 2 cos|dm fut + 20(t)]dt

small compared to the 1% integral
So,

£~ %/_O:O lu(t)|2dt

where, |u(t)| = a(t), the envelope.

25.2 Representations of Linear Bandpass Systems

Here h(t) is real, so

H*(—f) = H(f)
Define, B, §50
Then,
U%#—f)z{a et
T #H(-h. f<o
So,

H(f)=C(f = f)+C(=f = [o)

2



= h(t) = c(t)e®™ " + *(t)e 2!
= 2Re|c(t)e™™!]
Here, c(t) is the impulse response of the equivalent low-pass system and is

complex.

A filter that is encounted in the generation of single-sideband signal has
the impulse resonse,

1
—i, f>0
= H) = 1 f<0

H(f) represents an all-pass filter which introduces a —90° phase shift for
f <.
The output is (for input s(t))

r(t) = l/°° 1) g

Tt —T

This is called a Hilbert transform — output = §(t)

25.3 Response of a Bandpass System to a Bandpass Signal

So far we have seen that a narrowband bandpass signal and system can be
represented by equivalent low-pass signals and systems.

We want to look at the output,
s(t) = Re[u(t)e™]

h(t) = 2Re[c(t)e™™ ]

r(t) = Re[v(t)e™ /], some v(t)
where, .
r(t)= [ s(rh(t —r)dr



Or,

R(J) = [U( ~ ) + U = LU — 1)+ O (—f — £

where s(t) is a narrowband signal and h(t) is the impulse response of a nar-
rowband system

U(f—fo) =0 for f <0 and C(f — f.) =0 for f <0.

So,

U(f=[f)C (== [f)=0
and,

U(=f—=[f)C(f = f) =0
So,

R(f) = UG = FIOU = )+ U'(=F = £)C*(~f ~ 1)

1
= E[V(f - fc) + V*(_f - fc)]
where V(f) = U(f)C(f) is the output spectrum of the equivalent low-pass
system excited by the equivalent low-pass signal.
So,
v(t) = u(t) = c(t)

or,
u(t) = / u(T)e(t — 7)dr

These relationships between bandpass and equivalent low-pass signals allow

us to ignore any linear frequency translations encountered in the modulation

of a signal for the purpose of matching its spectral content to the frequency

allocation of a particular channel.



25.4 Representations of Bandpass Stationary Stochastic Processes

Let n(t) be a WSS stochastic process with zero mean.
n(t) = a(t) cos[2m f.t + 6(t)]

= x(t) cos 2w fot — y(t) sin 27 f ¢
= Re[z(t)ei%fct]
a(t) = envelope
2(t) = x(t) +iy(t) (complex envelope)
E[n(t)] = 0 = E[z(t)] = Ely(t)] = 0

Claim
Rx(7) = Ry(1)

ny(T) = —Ryx(T)

Proof
Ry (1) = E[n(t)n(t — 7)]

= E[(x(t) cos2m fot—y(t) sin 27 fot ) (x(t—7) cos 27 fe(t—7)—y(t—7) sin 27 f.(t—7))]
= Rx(7) cos 2 fot cos 27 fo(t — T)
+Ry (7)sin 27 fet sin 27 fo(t — 7)

— Ry x (7) sin 27 fot cos 2w fo(t — T)

(
—Rxy (7) cos 2 ft sin 27 fo(t — 7)

Use
1
cos Acos B = §[COS(A — B) + cos(A + B)]

1
sin Asin B = i[cos(A — B) — cos(A + B)]

1
sin Acos B = §[sin(A — B) 4 sin(A + B)]

Ro(r) = %[RX(T) + Ry (7)) cos 2 fur



—l-%[RX(T) — Ry (7)] cos 2 f.(2t — 7)
_%[ Ryx(r) + Ry ()] sin 27 for

_%[RYX (7) + Ry (7)] sin 27 fo(2t — 7)

RHS must be independent of t for n(t) to be WSS.
— RX (7‘) = Ry (7‘)

ny(T) = —Ryx(T)

Thus,
R, (1) = Rx(7) cos 27 f,T — Ry x(7)sin2x f.1

The autocorrelation function of the equivalent low-pass process
z(t) = x(t) +iy(t)

is defined as 1
Rz(7) = §E[z(t)z*(t +7)]

_ %[RX(T) + Ry(r) — iRxy(r) + iRyx(7)]

= Rx(T) —I—'éRyx(T)

So, '

R,(7) = Re[RZ(T)eZ%ch]
Thus, the autocorrelation function R,(7) of the bandpass stochastic process
is determined from Rz(7), the autocorrelation function of the equivalent low-

pass process z(t) and the carrier frequency f..
Now,

Su(f) = /_:{RG[RZ(T)ei27rch]}6—i27rfcq—d7_

_ %[Sz(f — fo) 4 Su(—f = £.)]



25.4.1 Properties of the In-Phase and Quadrature Components

Since

Rxy (1) = —Ryx(7)
and

Ryx (1) = Rxy(—71)
We get

Rxy (1) = —Rxy(—7)

= Rxy(7) is an odd function of T

So,

Rxy(0) =0 = z(t) and y(t) are uncorrelated for T = 0.

If n(t) is a Gaussian process, then x(t + 7) and y(¢) are jointly Gaussian and
for 7 = 0 they are uncorrelated = independent.
So, in this case their joint pdf is

1 12+y

fla,y) = 5—e =

where 02 = Rx(0) = Ry (0) = R,(0)

25.4.2 Representation of White Noise

The noise resulting from passing white noise through a spectrally flat (ideal)
bandpass filter is termed bandpass white noise.
The equivalent low-pass noise z(t) has

B
Nm |f| S 5
Sz(f) =
0,1f] > 4.
inmTB
e Ry(r) = Nosmw T
T

7



As B —
Rz (1) — N,o(T1)
The power spectral density for white noise and bandpass white noise is sym-

metric about f =0, so Ryx(7)=0 V.
Thus,

Rz(7) = Rx(7) = Ry (7)

— z(t) and y(t) are uncorrelated for all time shifts 7 and the autocorrelation
functions of z(t), z(t) and y(¢) are all equal.



