
13.0 Random Processes

13.1 Introduction

Definition: A random process is a set of indexed random variables X(u, t)
defined on (U, T, P) where t takes values in some index set T .

For any fixed t = t0 ∈ T, X(u, t0) is a random variable.
For a fixed u = u0 ∈ U, X(u0, t) is a sample function.

If T is finite, we have a random vector.
If T is countable, we have a random sequence.
If T = R, we have a random process.
If T = Rn, we have a random field.
The case T = R2 is used in image processing.

We often write X(t) for X(u, t)

Characterization of Random Process:
Random Variable: FX(x) = P (X ≤ x)
First order distribution and density of a random process,

FX(u, t) = P (X(u, t) ≤ x),

fX(u, t) =
dFX(u, t)

dx
.

In general, random variables for different t ∈ T are neither independently
nor identically distributed, so 1st order pdf does not characterize the ran-
dom process.

N th order distribution and pdf:

FX(x1, · · · , xn; t1, · · · , tn) = P (X(u, t1) ≤ x1 · · · , X(u, tn) ≤ xn)

leads to FX(x1, · · · , xn; t1, · · · , tn) which contains all information available.

This is usually too complicated to work with. Instead we rely on 1st and 2nd

order statistics. Note that these completely characterize the Gaussian case
and is often good enough for other distributions.
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13.2 The Second Moment Theory of Random Processes

Mean:
µX(t) = E [X(u, t)] ∀ t ∈ T

=
∫

∞

−∞

xfX(x, t) dx

Correlation:

RX(t1, t2) = E [X(u, t1)X
∗(u, t2)] ∀ t1, t2 ∈ T.

=
∫

∞

−∞

∫
∞

−∞

x1x2fX(x1, x2; t1, t2) dx1dx2

Covariance:

KX (t1, t2) = E [(X(u, t1) − µX(t1))(X(u, t2) − µX(t2))
∗]

KX (t1, t2) = RX(t1, t2) − µX(t1)µ
∗

X(t2)

13.3 Examples of Random Processes

1)
X(u, t) = A(u) ∀µ ∈ U, t ∈ T

A(u) is a random variable with mean m and variance σ2

µX(t) = E [A(u)] = m (not dependent on t)

RX(t1, t2) = E [X(u, t1)X
∗(u, t2)] = E [A(u)A(u)] = σ2 + m2

KX(t1, t2) = σ2

Note When we compute µX(t) as E [X(u, t)], then we are in effect comput-
ing the ensemble average for each t. Similarly for RX and KX .
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Say, Z(u) ∼ N(0, σ2). X(u, t) = Z(u)

µX(t) = 0, KX (t1, t2) = σ2

Let us observe this X(u, t) over time t. X(u, t) does not change over time.
We just observe some constant sample and if we do this many times on the
average the constant will be 0 but any particular outcome, i.e., X(u0, t) is
some constant Z(u0).

So, time average of X(u0, t) is a constant and not necessarily equal to the
ensemble average for some X(u, t0).

If time average equals to ensemble average, we have an ergodic process.

2)
X(u, t) = sin(t − φ(u))

φ(u) ∼ U(−π, π)

So,

fφ(φ) =







1

2π
|φ| < π,

0, elsewhere

µX(t) = E [sin(t − φ(u))]

=
∫ π

−π

1

2π
sin(t− φ)dφ

=
1

2π
cos(t − φ)|π

−π = 0

KX(t1, t2) = RX(t1, t2)

E [sin(t1 − φ) sin(t2 − φ)]

=
1

2
E [cos(t1 − t2) − cos(t1 + t2 − 2φ)]

=
1

2
cos(t1 − t2) −

1

4π

∫ π

−π
cos(t1 + t2 − 2φ)dφ

︸ ︷︷ ︸

0
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KX(t1, t2) =
1

2
cos(t1 − t2)

Note KX(t1, t2) is a function of (t1 − t2) only. So,

KX(t1 + τ, t2 + τ ) =
1

2
cos(t1 − t2)

This is 2nd order stationarity.

13.4 Properties of Correlation Functions

1) µX(t) is any real function defined on T .
2) RX(t1, t2) = R∗

X(t2, t1)
3) RX(t1, t2) is a non-negative definite function.
4) RX(t, t) ≥ 0 ∀t ∈ T .

5) |RX(t1, t2)| ≤
√

RX(t1, t1)
√

RX(t2, t2)

1),2),3) are necessary and sufficient condition for the existence of a random
process with mean µX(t) and correlation RX(t1, t2).
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