
2.0 Random Vectors

2.1 Definitions of Correlation Matrices

Definition: Let X1, X2, . . . , Xn be n random variables defined on (U, F, P ).
Then,

X(u) =













X1(u)
X2(u)

...
Xn(u)













is a random vector.

To fully characterize X(u) we need an n−dimensional joint pdf . This would
often result in very cumbersome calculations when utilized. Instead of doing
this we usually just use 1st and 2nd order statistics in our study of random
vectors. This is sufficient for most needs. We often write X for X(u).

Definition: µX = E [X] is called the mean vector. Note

µX = [E[X1(u)], . . . , E[Xn(u)]]t .

Here t denotes the transpose.

Definition: RX = E
[

XX†
]

is called the correlation matrix. Here † denotes
the conjugate transpose, i.e.,

X†(u) = (X∗
1
(u), . . . , X∗

n(u)) .

Thus

RX =







E [X1(u)X∗
1
(u)] . . . E [X1(u)X∗

n(u)]
... . . .

...
E [Xn(u)X∗

1
(u)] . . . E [Xn(u)X∗

n(u)]





 .

Definition: KX = E
[

(X − µX) (X− µX)†
]

is called the covariance matrix.

Note: KX = RX − µXµ
†
X

.

Definition: If X(u) and Y(u) are two random vectors then RXY = E
[

XY†
]

is called the cross-correlation matrix.
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Note: RXY = R
†
YX

.

Definition: KXY = E
[

(X− µX) (Y − µY)
†
]

is called the cross-covariance

matrix.

Note: KXY = RXY − µXµ
†
Y

.

Let Z = [XY]t. Then the correlation matrix for Z is

RZ = E
[

ZZ†
]

=
[

RX RXY

RYX RY

]

.

2.2 Properties of Correlation Matrices

Definition: A matrix M is said to be Hermitian symmetric if M = M†.

Note:

R
†
X

=
(

E
[

XX†
])†

= E

[

(

XX†
)†
]

= E
[(

(X†)†X†
)]

= E
[

XX†
]

= RX

so correlation matrices are Hermitian symmetric.

Definition: A Hermitian symmetric matrix M is said to be non-negative

definite if for any complex vector a

a†Ma ≥ 0.

Claim: Correlation matrices are non-negative definite.
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Proof: We just need to show a†RXa ≥ 0.

a†RXa = (a∗
1
. . . a∗

n)E













X1

...
Xn





 (X∗
1
· · ·X∗

n )













a1

...
an







= E





(

n
∑

i=1

a∗
i Xi

)





n
∑

j=1

ajX
∗
j







 = E





(

n
∑

i=1

a∗
i Xi

)





n
∑

j=1

a∗
jXj





∗



= E





∣

∣

∣

∣

∣

n
∑

i=1

a∗
i Xi

∣

∣

∣

∣

∣

2


 ≥ 0.

Also, a†KXa ≥ 0.

2.3 Linear Transformations of Random Vectors

Y(u) is formed by a linear transformation of X(u). Here X(u) ∈ Rn and
Y(u) ∈ Rm.

Yi(u) =
n
∑

j=1

hijXj(u), i = 1, 2, . . . , m

or
Y(u) = HX(u)

where

H =







h11 . . . h1n
... . . .

...
hm1 . . . hmn





 .

Let us now look at the first and second moments.

µY = E [Y(u)] = E [HX(u)] = HE [X(u)] = HµX.

RY = E
[

Y(u)Y†(u)
]

= E
[

HX(u) (HX(u))†
]

= HE
[

X(u)X(u)†
]

H†

= HRXH†.

Also, KY = HKXH†.
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Question: Given a vector X of n uncorrelated random variables with zero
mean and unit variance how do we transform this vector into a vector Y

with mean c and covariance KY?

Let
Ỹ(u) = HX(u).

Then
µ

Ỹ
= HµX = 0

and
K

Ỹ
= HKXH†.

Now KX is an n × n identity matrix, In. Thus

K
Ỹ

= HInH
† = HH†.

We now let
Y(u) = Ỹ(u) + c.

Then
Y(u) = HX(u) + c.

Hence,
µY = c

and
KY = K

Ỹ
= HH†.

Problem: We need to find H given some KY. This is a matrix factorization
problem that we will deal with later in the course.
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