26.0 Miscellaneous Topics

26.1 The Poisson Process

Consider a sequence of i.i.d. random variables v(n), n > 1, with density
£ (tn) = Xe Mu(t), n=1,2,....
Define .
T(n) = 37(4)

T'(n) would represent the time of arrival of the nth event if v(n) represents
the interarrival times. This is used in modeling counts on a Geiger counter
that detects particles and is also used in Queuing theory.

Now T'(n) is the sum of n i.i.d. random variables so its pdf is the (n — 1)
fold convolution of f,(t,n). We get

fr(t,n) = )\e*)‘tu(t)

(n—1)!

B{T(n)) = B [Z )] =/

Var[T(n)] = n/A* = nVar[y(n)].
Define

oo

N(t) = Y ult = T(n)]

n=1
which equals the number of arrivals (or events) up to and including time ¢.
Now
y(n) =T(n)—T(n—1)
PIN(t)=n]=P[T(n) <t, T(n+1) > t]
= P[T(n) <t, v(n+1) >t =T(n)]
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or

Note that T'(n) has independent increments. So

PIN () ~ N(ta) = n] = PO I oty

Now
E[N(t)] = At.

Suppose ty > t1. Then
E[N(t2)N(t1)] = E[(N(t1) + [N(t2) — N(t1)])N (1))

= E[(N(t1)*] + E[N(t2) — N(t1)]E[N ()]
My 4+ N4 Ata — t)AG
= My + Ntyts.

For t; > ty a similar expression holds. Thus,
RN(tl, tg) =) min(tl, tg) + )\2t1t2

and
KN(tl, tg) = /\min(tl, tg)

Example: Radioactivity monitoring that counts particles can often be mod-
eled as Poisson. We start monitoring at time ¢ and count for 7j seconds.

Let AN = number of counts in the interval [t,t + 7| = N(t + 7) — N(t).
Then AN has a Poisson distribution with mean AT where X is the average
arrival rate. The probability that an alarm does not sound is

o (ATp)*
PIAN < N = 3 | k?) e A,

k=0




26.2 Sampling Theorem for Bandlimited WSS Random Processes

Definition: A WSS random process X (u,T’) is said to be bandlimited to
[wi, wa] if Sx(w) =0 for w ¢ w1, ws].
If w; = 0, we have a lowpass system with cutoff frequency w. = wy. Here

sinfw. (7 — nT)]
we(T —nT)

Rx(T): io: Rx(nT)

n=—oo

where T' = 7/w,.

Theorem: If a 2nd order WSS RP X (u, t) is lowpass with cutoff frequency

W, then
sinfw.(7 — nT)]

X(u,t) = ; X (u,nT) on(r =) (M.S.)
i.e., with
- sinfw. (7 — nT)]
Xn(u,t) = n;NX(u,nT) wo(r — )
then
]\}EI})O EHX(U, t) - XN(ua t)‘2] = 0.
Proof:

EHX(U, t) - XN(uv t)|2]
= BE[(X(u,t) = Xn(u, ) X" (0, )] = E[(X(u, T) = Xn(u, 1)) X5 (u,1)].

Now
E[(X(u7 t) - XN(”? t))X*(u7 t)]
= Rx(0) = 3 Rx(nT —1) S”jfi"(jf:??]
But

sin[w.(7 — nT)]

RX(T—t): i Rx(nT—t) a}c(T—nT)

n=—oo

Set 7 =1 to get

sinfw.(t —nT)]
we(t —nT)

Ry (0) = f: Ry (nT —t)

n=—oo



Thus
E[(X(u,t) — Xn(u,t)) X" (u,t)] = 0 as N — oc.

Now
E[(X (u,t) — Xn(u,t)) X" (u,mT)]
= Rx(t—mT) — ;N Rx(nT — mT) Slrj:ct(t__n;?)]
But

sinfw. (7 — nT)]
we(T —nT)

Rx(tr—mT) = i Rx(nT —mT)

n=—oo

Set 7 =1 to get

sinfw,(t — nT)]

Rx(t—mT): i RX(nT—mT)

n=-—00 wc(t - nT)
Thus
E[(X(u,t) — Xn(u,t))X*(u,mT)] — 0 as N — oo.
Next let R
X(u,t) = lim Xn(u,t) (M.S.).
Then

~

El(X(u,t) — X (u,t)) X" (u,mT)] = 0.
But, Xy(u,t) is a linear combination of X (u, mT) for m = —N to N so
which implies

A}i_r}rlooE[(X(u, t) — Xn(u,t) X5 (u,t)] = 0.
So
lim E[|X(u,t) — Xn(u,t)|?] = 0.

N—oo



