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14.0 Statistics: Maximum Likelihood Estimator

and the Cramer-Rao Lower Bound

The maximum likelihood estimator is by far the most popular estimator. In
this approach we choose the value of the parameter ¢ that maximizes the
likelihood function as given below.

The likelihood function is defined as

Here, x =z = (x1,...,2y,).

Ezample: Suppose X = (Xi,...,X,) where each X; is Bernoulli (0,1) with
parameter p, with p unknown. Then
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L(plz) = [[p" (1 =p)'= =p’(1 = p)"™", wherey =) ;.
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We compute
log L(p|z) = ylogp + (n — y)log(1 — p).
We thus solve
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Ezample: Suppose X = (Xi,...,X,,) where each X; is uniform (0, ), with
6 unknown. Then

- 0", 0< T) < Tp) < 0,
fla) = { 0, elsewhere.

We see that f(z) increases as 6 decreases so to maximize f(z) we make 0 as

small as possible. Hence, R
9 - X(n),



that is, we make our estimate of 6 to be the largest observed value of the
data. Note that we do this even though X, can never achieve the true value
of # given our sample space. But for any € > 0 if we let § = X(n) + € then
it is always possible that § = X(,) + €/2 and hence we did not choose the
smallest possible 6.

Ezample: Suppose X = (Xi,...,X,) where each X; is uniform (a,a + ),
with both a and # unknown. Then

o a<zy <z <a+b,
flw) = { 0, elsewhere.

We see that f(z) increases as 6 decreases so to maximize f(z) we make 6 as
small as possible. To do this note

Xy =Xy <(a+0)—a=90.

But we also require a < X(;). So to make 6 as small as possible we must
make a as large as possible since we need X,y < a + 6. We see if we make
a smaller than needed we need to make # larger in order to satisfy this last
inequality. Hence, we choose
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Ezample: Suppose X = (Xi,...,X,) where each X; is uniform (0,6 + 1),
with # unknown. Then

1, 9<£l?(1)<[l7(n)<9—|-1,
flw) = { 0, elsewhere.

We observe
X(n) —1<bl< X(l).

So we choose )
0 e (X(n) — 1,X(1)) .

We now provide the Cramer-Rao lower bound (CRLB) for any variance of
any estimator(not just the MLE).



Theorem (Cramer-Rao Inequality). Let X = (X3,..., X)) be a sample
with pdf f(x]0) and let W(X) = W(Xjy,...,X,) be any estimator satisfying

d
GEW(X) = / g IV G (1) dx

and VaryW(X) <

Then )
(& E,W (X))

E, ((% log f(XIQ))2>'

VargW(X) >

Proof: To be supplied.
Corollary. If X;,..., X, are i.i.d. then
2
(& E,W (X))
-
nky ((% log £(X10)) )

VargW(X) >

If f(x|0) satisfies

0 (p1e10x10)) = [ 35 | (55100 1x10)) s1010)| a0

Ey ((5@ logf(X|9)> ) (5992 logf(X|9)>

This last result holds for so called exponential families of distribution. If this
latter case holds and we also have that W (X) is unbiased for § then for i.i.d.
we have

then

1
—nky (892 log f(X|9))

Ezample: Consider X = (X7, ..., X,), an i.i.d. sample where each Xj is from
the normal distribution with mean y and variance o2. In this case the CRLB
for & = p is found using (note the normal is a member of the exponential

VargW(X) >
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Suppose we estimate p using
x-Llyx
=0
Then
_ 0’2
Var (X) = —
n

and we wee that the CRLB is actually achieved so this estimator is the best
for p in terms of minimizing variance.



