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14.0 Statistics: Maximum Likelihood Estimator

and the Cramer-Rao Lower Bound

The maximum likelihood estimator is by far the most popular estimator. In
this approach we choose the value of the parameter θ that maximizes the
likelihood function as given below.

The likelihood function is defined as

L(θ|x) = L(θ1, . . . , θk) =
n
∏

i=1

f(xi|θ1, . . . , θk).

Here, x = x = (x1, . . . , xn).

Example: Suppose X = (X1, . . . , Xn) where each Xi is Bernoulli (0,1) with
parameter p, with p unknown. Then

L(p|x) =
n
∏

i=1

pxi(1 − p)1−xi = py(1 − p)n−y , where y =
n
∑

i=1

xi.

We compute
log L(p|x) = y log p + (n − y) log(1 − p).

We thus solve
d

dp
=

y

p
+

y − n

1 − p
= 0

to get

p̂ =
y

n
.

Example: Suppose X = (X1, . . . , Xn) where each Xi is uniform (0, θ), with
θ unknown. Then

f(x) =

{

θ−n, 0 < x(1) < x(n) < θ,
0, elsewhere.

We see that f(x) increases as θ decreases so to maximize f(x) we make θ̂ as
small as possible. Hence,

θ̂ = X(n),
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that is, we make our estimate of θ to be the largest observed value of the
data. Note that we do this even though X(n) can never achieve the true value

of θ given our sample space. But for any ε > 0 if we let θ̂ = X(n) + ε then
it is always possible that θ = X(n) + ε/2 and hence we did not choose the

smallest possible θ̂.

Example: Suppose X = (X1, . . . , Xn) where each Xi is uniform (a, a + θ),
with both a and θ unknown. Then

f(x) =

{

θ−n, a < x(1) < x(n) < a + θ,
0, elsewhere.

We see that f(x) increases as θ decreases so to maximize f(x) we make θ̂ as
small as possible. To do this note

X(n) − X(1) < (a + θ) − a = θ.

But we also require a < X(1). So to make θ̂ as small as possible we must
make a as large as possible since we need X(n) < a + θ. We see if we make
a smaller than needed we need to make θ larger in order to satisfy this last
inequality. Hence, we choose

â = X(1)

θ̂ = X(n) − X(1).

Example: Suppose X = (X1, . . . , Xn) where each Xi is uniform (θ, θ + 1),
with θ unknown. Then

f(x) =

{

1, θ < x(1) < x(n) < θ + 1,
0, elsewhere.

We observe
X(n) − 1 < θ < X(1).

So we choose
θ̂ ∈

(

X(n) − 1, X(1)

)

.

We now provide the Cramer-Rao lower bound (CRLB) for any variance of
any estimator(not just the MLE).
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Theorem (Cramer-Rao Inequality). Let X = (X1, . . . , Xn) be a sample
with pdf f(x|θ) and let W (X) = W (X1, . . . , Xn) be any estimator satisfying

d

dθ
EθW (X) =

∫

∂

∂θ
[W (xf(x|θ)] dx

and V arθW (X) < ∞.

Then

V arθW (X) ≥

(

d
dθ

EθW (X)
)2

Eθ

(

(

∂
∂θ

log f(X|θ)
)2
) .

Proof : To be supplied.

Corollary. If X1, . . . , Xn are i.i.d. then

V arθW (X) ≥

(

d
dθ

EθW (X)
)2

nEθ

(

(

∂
∂θ

log f(X|θ)
)2
) .

If f(x|θ) satisfies

d

dθ
Eθ

(

∂

∂θ
log f(X|θ)

)

=
∫

∂

∂θ

[(

∂

∂θ
log f(X|θ)

)

f(x|θ)

]

dx

then

Eθ





(

∂

∂θ
log f(X|θ)

)2


 = −Eθ

(

∂2

∂θ2
log f(X|θ)

)

.

This last result holds for so called exponential families of distribution. If this
latter case holds and we also have that W (X) is unbiased for θ then for i.i.d.
we have

V arθW (X) ≥
1

−nEθ

(

∂2

∂θ2 log f(X|θ)
) .

Example: Consider X = (X1, . . . , Xn), an i.i.d. sample where each Xi is from
the normal distribution with mean µ and variance σ2. In this case the CRLB
for θ = µ is found using (note the normal is a member of the exponential
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family)

V arµW (X) ≥
1

−nEµ

(

∂2

∂µ2 log f(X|µ)
)

=
σ2

n
.

Suppose we estimate µ using

X̄ =
1

n

n
∑

i=1

Xi.

Then

V ar
(

X̄
)

=
σ2

n

and we wee that the CRLB is actually achieved so this estimator is the best
for µ in terms of minimizing variance.
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