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9.0 Functions of One Random Variable

Often we are concerned with functions of a random variable [recall a random
variable itself is a function of the outcome of an experiment]. If y = g(x) is
a real-valued function then Y = g(X) is a random variable. Given fX(x) or
FX(x) we seek fY (y) and FY (y).

Definition: Let C be an event (some subset) associated with the range
space of Y , RY . Define B ⊂ RX as

B = {x ∈ RX : g(x) ∈ C} .

Then, B and C are called equivalent events (B occurs if and only if C occurs).

Definition: Let X be a random variable defined on the sample space Ω.
Let RX be the range space of X. Let g be a real-valued function and com-
pute the random variable Y = g(X) with range space RY . For any C ⊂ RY

define
P (C) = P ({x ∈ RX : g(x) ∈ C}) .

Note
P (C) = P ({ω ∈ Ω : g (X(ω)) ∈ C}) .

Example: Let X be a continuous random variable with pdf

f(x) =

{

e−x, x > 0
0, elsewhere.

Let g(x) = 2x + 1. Then RX = {x : x > 0} while RY = {y : y > 1}. Define
the event C as C = {Y ≥ 5}, i.e., C = {ω : g (X(ω)) ≥ 5} = {ω : Y (ω) ≥ 5}.
Now y ≥ 5 iff 2x +1 ≥ 5 iff x ≥ 2. So C is equivalent to B = {X ≥ 2}. Now

P (X ≥ 2) =
∫ ∞

2
e−xdx = e−2

so
P (Y ≥ 5) = e−2.
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9.1 Finding the Distribution of g(X)

9.1.1 Discrete Case

General Procedure:

1) First we consider the case where X is discrete and Y is discrete.

Let xi1, xi2, . . . represent the X-values having the property g(xij) = yi, ∀ j.
Then

fY (yi) = P (Y = yi) = P (X = xi1) + P (X = xi2) + · · ·
= fX(xi1) + fX(xi2) + · · ·

i.e., to evaluate the probability of the event {Y = yi}, find the equivalent
event in terms of X and add all the corresponding probabilities together.

Example: Let X have possible values 1, 2, 3, . . . and

P (X = n) = (1/2)n, n = 1, 2, . . . .

Let

Y =

{

1, x is even
−1, x is odd.

P (Y = 1) = P (X = 2) + P (X = 4) + · · · = (1/2)2 + (1/2)4 + · · ·

=
∞
∑

i=1

(1/2)2i =
∞
∑

i=1

(1/4)i =
1/4

1 − 1/4
= 1/3

and
P (Y = −1) = 1 − P (Y = 1) = 2/3.

2) It may turn out that X is a continuous random variable while Y is discrete.
For example, X may assume all real values and Y = 1 if X ≥ 0 and Y = −1
if X < 0. So P (Y = 1) = P (X ≥ 0) and P (Y = −1) = P (X < 0). In
general, if {Y = yi} is equivalent to an event, say A, in the range space of
X, then

fY (yi) = P (Y = yi) =
∫

A
fX(x)dx.
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9.1.2 Continuous Case

Here X is a continuous random variable and g is a continuous function. So,
Y = g(X) is a continuous random variable. We seek the pdf of Y , i.e., fY (y).

General Procedure:

i. Obtain FY (y) = P (Y ≤ y) by finding the event A (in the range space
of X) which is equivalent to the event {Y ≤ y}.

ii. Differentiate FY (y) to get fY (y).

iii. Determine those values in the range space of Y for which fY (y) > 0.

Example: Let

fX(x) =

{

2x, 0 < x < 1,
0, elsewhere.

Let g(x) = 3x + 1. Then

FY (y) = P (Y ≤ y) = P (3X + 1 ≤ y) = P
(

X ≤ y − 1

3

)

=
∫

y−1

3

0
2xdx =

(

y − 1

3

)2

.

Thus,

fY (y) = F ′
Y (y) =

2

9
(y − 1).

Now fX(x) > 0 for 0 < x < 1, therefore fY (y) > 0 for 1 < y < 4.

There is another way of getting the same result. Consider

FY (y) = P (Y ≤ y) = P (3X + 1 ≤ y) = P
(

X ≤ y − 1

3

)

= FX

(

y − 1

3

)

.

Then,

fY (y) =
d

dy
FY (y) =

d

dy
FX

(

y − 1

3

)

=
dFY (y)

du

du

dy
=

dFX(u)

du

du

dy
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where u = (y − 1)/3. So,

fY (y) = F ′
X(u)

du

dy
= fX(u)

du

dy
= 2

(

y − 1

3

)

1

3
=

2

9
(y − 1).

The following theorem is very useful if the conditions of the theorem are met.

Theorem: Let X be a continuous random variable with pdf fX(x) > 0
for a < x < b. Suppose that y = g(x) is a strictly monotone (strictly increas-
ing or strictly decreasing) function of x. Assume that g is differentiable (and
hence continuous) for all x. Then Y = g(X) has pdf

fY (y) = fX(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

where x is expressed in terms of y, i.e., x = g−1(y). Hence.

fY (y) = fX

(

g−1(y)
)

∣

∣

∣

∣

dg−1(y)

dy

∣

∣

∣

∣

.

If g is increasing then g is nonzero for those values of y satisfying g(a) < y <
g(b). If g is decreasing then g is nonzero for y satisfying g(b) < y < g(a).

Proof: First assume g is a strictly increasing function. Then

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(

X ≤ g−1(y)
)

= FX

(

g−1(y)
)

.

Thus,

fY (y) =
dFY (x)

dx

dx

dy
=

dFX(x)

dx

dx

dy

where x = g−1(y). Hence,

fY (y) = fX(x)
dx

dy
= fX(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

.

Now assume g is a strictly decreasing function. Then,

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(

X ≥ g−1(y)
)

= 1 − P
(

X < g−1(y)
)

= 1 − FX

(

g−1(y)
)

.
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So,
dFY (y)

dy
=

dFY (y)

dx

dx

dy
, x = g−1(y)

or

fY (y) =
d

dx
[1 − FX(x)]

dx

dy
= −fX(x)

dx

dy
.

But,
dx

dy
< 0 since g(x) is strictly decreasing. Hence,

fY (y) = fX(x)
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

.

Note: If y = g(x) is not a strictly monotone function of x, we cannot apply
the above theorem directly but we can still use the general method.

Example: Suppose

fX(x) =



















1

2
, −1 < x < 1,

0, elsewhere.

Let g(x) = x2. This function is not monotone over the interval (-1, 1). Here

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y)

= FX(
√

y) − FX(−√
y) + P (X = −√

y).

Thus,

fY (y) =
fX(

√
y)

2
√

y
− fX(−√

y)

−2
√

y
=

1

2
√

y
[fX(

√
y) + fX(−√

y)]

or

fY (y) =
1

2
√

y

(

1

2
+

1

2

)

=
1

2
√

y
, 0 < y < 1.

The result obtained in this example gives the following theorem.

Theorem: Let X be a continuous random variable with pdf fX(x). Let
Y = X2. Then the pdf of Y is

fY (y) =
1

2
√

y
[fX(

√
y) + fX(−√

y)] .
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Example: Suppose

fX(x) =

{

3x2, 0 ≤ x ≤ 1,
0, elsewhere.

Let Y = e−X = g(X). Note that g(x) is monotone in [0, 1]. Thus,

fY (y) = fX

(

g−1(y)
)

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.

g(x) = e−x or y = e−x ⇒ −x = ln y ⇒ x = − ln y = g−1(y).

Thus,

fY (y) = 3(− ln y)2

∣

∣

∣

∣

−1

y

∣

∣

∣

∣

= 3(ln y)21

y
.

Endpoints: x = 0 ⇒ y = 1, x = 1 ⇒ y = e−1. So,

fY (y) =



















3(ln y)2 1

y
, e−1 ≤ y ≤ 1,

0, elsewhere.

Inverse Problem:

i. Given a random variable X with distribution function FX(x), find g(x0)
so that U = g(X) is uniform in (0, 1).

Claim g(x0) = FX(x0) works.

Proof:

FU(u0) = P (U ≤ u0) = P (X ≤ x0) = FX(x0) = u0.

ii. Given a random variable U ∼ U(0, 1), find g(u0) so that Y = g(U) has
some desired distribution function FY (y0).

Claim g(u0) = F−1
Y (u0) works.

Proof:

Y = F−1
Y (U) ⇔ P (Y ≤ y0) = P (F−1

Y (U) ≤ y0) = P (U ≤ FY (y0)) = FY (y0).
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iii. Given X with distribution function FX(x0), find g(x0) so that Y =
g(X) has some desired distribution function FY (y0).

Claim g(x0) = F−1
Y (FX(x0)) works.

Proof:

Y = F−1
Y (FX(X)) ⇔ P (Y ≤ y0) = P (F−1

Y (FX(X)) ≤ y0) = P (FX(X) ≤ FY (y0))

= FY (y0) since FX(X) is U(0, 1) from (i) above.

Example: Say X ∼ U(0, 1). We desire a distribution function

FY (y0) =

{

1 − e−y0, y0 ≥ 0,
0, elsewhere.

Find y0 = g(x0).

Solution: Using (ii) above we let g(x0) = F−1
Y (x0). We then solve y0 = F−1

Y (x0)
to get x0 = FY (y0), so set x0 = 1 − e−y0 . Hence, y0 = − ln(1 − x0) and thus
g(x0) = − ln(1 − x0).

9.2 Expectations

Often we would like to know the mean (or average or expected value) of a
random variable resulting from a random experiment.

9.2.1 Discrete Case

Say X has values in {x1, x2, x3, . . .} and P (X = xi) = f(xi) = pi.

Definition: The expected value of X is given by

E(X) =
∑

i

xif(xi)

whenever this sum exists.

Recall f(xi) ≥ 0 and
∑

i f(xi) = 1. So, E(X) is the average of the val-
ues of X with each value weighted according to its probability of occurrence.
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Lemma: E[g(X)] =
∑

i g(xi)fX(xi) where fX(xi) = P (X = xi) = pi.

Proof: Let Y = g(X), then E[g(X)] = E(Y ) =
∑

i yifY (yi). Now

∑

i

g(xi)fX(xi) =
∑

i





∑

j

g(xj)fX(xj)





where the inner sum is over all indices j for which g(xj) = yi, for some fixed
yi. Thus, all the terms g(xj) are constant in the inner sum. Hence,

∑

i

g(xi)fX(xi) =
∑

i

yi

∑

j

fX(xj).

But,
∑

j

fX(xj) =
∑

j

P (X = xj) = P (Y = yi) = fY (yi).

So,
∑

i

g(xi)fX(xi) =
∑

i

yifY (yi).

Theorem:

a. X ≥ 0 ⇒ E(X) ≥ 0.

b. E(aX + bY ) = aE(X) + bE(Y ).

c. E(1) = 1.

Proof: Easy. Left as an exercise.

Note: Part (a) of this theorem implies expectation is a linear operator.

9.2.2 Continuous Case

Definition: The expected value of X is given by

E(X) =
∫ ∞

−∞
xfX(x)dx

whenever this integral exists.
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Example: Say X has pdf

fX(x) =

{

3x2, 0 ≤ x ≤ 1,
0, elsewhere.

Then,

E(X) =
∫ 1

0
x(3x2)dx = 3/4.

Lemma: E[g(X)] =
∫∞
−∞ g(x)fX(x)dx.

Proof: Omitted.

Theorem:

a. X ≥ 0 ⇒ E(X) ≥ 0.

b. E(aX + bY ) = aE(X) + bE(Y ).

c. E(1) = 1.

Proof: Easy. Left as an exercise.

9.3 Variance

The variance measure gives us an indication of the spread of the data about
its mean.

Notation: The variance of X is written V ar(X) or σ2
X or σ2.

9.3.1 Discrete Case

Definition: The variance of X is given by

V ar(X) =
∑

i

(xi − µ)2fX(xi)

where µ = E(X). Thus, V ar(X) = E [(X − µ)2].
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9.3.2 Continuous Case

Definition: The variance of X is given by

V ar(X) =
∫ ∞

−∞
(x − µ)2fX(x)dx

where µ = E(X). Again, V ar(X) = E [(X − µ)2].

9.4 Examples and Additional Results

Theorem: Let X be binomially distributed with parameters n, p (write
X ∼ B(n, p)). Then E(X) = np.

Proof:

i. Direct proof.

P (X = k) =

(

n

k

)

pk(1 − p)n−k.

So,

E(X) =
n
∑

k=0

k
n!

(n − k)!k!
pk(1 − p)n−k

=
n
∑

k=1

n!

(n − k)!(k − 1)!
pk(1 − p)n−k.

Let s = k − 1. Then

E(X) =
n−1
∑

s=0

n!

(n − s − 1)!s!
ps+1(1 − p)n−s−1

=
n−1
∑

s=0

n

(

n − 1

s

)

ps+1(1 − p)n−s−1

= np
n−1
∑

s=0

(

n − 1

s

)

ps(1 − p)n−1−s.

11



Recall the binomial theorem:

(a + b)n =
n
∑

k=0

(

n

k

)

akbn−k.

Replace n by n − 1, let a = p, b = 1 − p to get

1 = [p + (1 − p)]n−1 =
n−1
∑

k=0

(

n − 1

k

)

pk(1 − p)n−1−k .

Therefore,
n−1
∑

s=0

(

n − 1

s

)

ps(1 − p)n−1−s = 1

and thus E(X) = np.

ii. Quick proof.
Think of X as the number of successes in n Bernoulli trials. Let Xi be
the number of successes on the ith trial. Then,

P (Xi = 1) = p, P (Xi = 0) = 1 − p.

Hence,
E(Xi) = 1 · p + 0 · (1 − p) = p.

Now,
X = X1 + X2 + · · · + Xn.

So,
E(X) = E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn)

= p + · · · + p = np.

Example: Say X has pdf

fX(x) =

{

2x, 0 < x < 1,
0, elsewhere.

Let Y = g(X) = 3X + 1. Find E(Y ).

Previously, (see section 9.1.2) we derived

fY (y) =







2

9
(y − 1), 1 < y < 4,

0, elsewhere.
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So,

E(Y ) =
∫ 4

1
y
[

2

9
(y − 1)

]

dy = 3

or (without finding the pdf of Y),

E(Y ) = E[g(X)] =
∫ 1

0
(3x + 1)(2x)dx = 3.

Theorem: V ar(X) = E (X2) − [E(X)]2.

Proof:

V ar(X) = E
[

(X − µ)2
]

= E
[

X2 − 2Xµ + µ2
]

= E
(

X2
)

− 2µE(X) + µ2

= E
(

X2
)

− [E(X)]2

since µ = E(X).

Properties of Variance:

i. If c is a constant, V ar(X + c) = V ar(X).

Proof:

V ar(X + c) = E
{

[(X + c) − E(X + c)]2
}

= E
{

[X + c − E(X) − c]2
}

= E
{

[X − E(X)]
2
}

= V ar(X).

ii. If c is a constant, V ar(cX) = c2V ar(X).

Proof: Exercise.

Lemma: If X is discrete and takes values 1, 2, 3, . . . , then

E(X) =
∞
∑

n=0

P (X > n).

13



Proof: Let pi = P (X = i). Then

P (X > 0) = p1 + p2 + p3 + · · · + pk + · · ·
P (X > 1) = p2 + p3 + · · · + pk + · · ·
P (X > 2) = p3 + · · · + pk + · · ·

...
P (X > k) = pk+1 + · · ·

...

By summing along the rows we find the total in the array is

∞
∑

n=0

P (X > n).

By summing along the columns we find the total in the array is

p1 + 2p2 + 3p3 + · · · + kpk + · · · .

Thus equating these last results we get

∞
∑

n=0

P (X > n) = p1 + 2p2 + 3p3 + · · ·

=
∞
∑

k=1

kpk = E(X).

An Interpretation of Expectation:

Suppose we measure the squared distance between a random variable X and
a constant b by (X − b)2. Let us find b that minimizes E[(X − b)2], which
gives us a predictor of X. (We do not try to find a b that minimizes (X − b)2

since such a b would depend on X so we could not use it as a predictor.)

Consider
E[(X − b)2] =

∫ ∞

−∞
(x − b)2fX(x)dx.

Set
d

db
E[(X − b)2] = 0 ⇒ d

db

∫ ∞

−∞
(x− b)2fX(x)dx = 0.
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We can solve this if we can exchange the order of differentiation and integra-
tion (justification, in general, requires measure theory concepts). Assuming
okay, we get

∫ ∞

−∞
−2(x − b)fX(x)dx = 0 ⇒

∫ ∞

−∞
xfX(x)dx = b

∫ ∞

−∞
fX(x)dx.

But ∫ ∞

−∞
fX(x)dx = 1

thus
b =

∫ ∞

−∞
xfX(x)dx = E(X).

We can get this same result another way as follows:

E
[

(X − b)2
]

= E
[

(X − E(X) + E(X) − b)2
]

= E
[

((X − E(X)) + (E(X) − b))2
]

= E
[

(X − E(X))2
]

+ 2E [(X −E(X))(E(X) − b)] + E
[

(E(X) − b)2
]

.

Now (E(X) − b) is a constant so

E [(X − E(X))(E(X) − b)] = (E(X) − b)E [(X − E(X))]

= (E(X) − b)(E(X) − E(X)) = 0

so
E
[

(X − b)2
]

= E
[

(X − E(X))2
]

+ (E(X) − b)2.

We have no control over E [(X − E(X))2] since there is no b in this expres-
sion. Thus, E [(X − b)2] is minimized if we minimize (E(X) − b)2. Since
(E(X) − b)2 ≥ 0 this term is minimized if b = E(X). Hence,

min
b

E
[

(X − b)2
]

= E
[

(X − E(X))2
]

.

9.5 Moments

Definitions: For k = 1, 2, 3, . . . , the kth moment of X is

mk = E
[

Xk
]
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and the kth central moment of X is

µk = E
[

(X − E(X))k
]

.

Note: The 2nd central moment of X is the variance of X, V ar(X) = σ2
X.

The standard deviation of X is σX =
√

σ2
X.

Normal Case: Consider the mean-zero normal density

f(x) =
1√
2πσ

e−x2/2σ2

.

Claim: For n ≥ 1,

E [Xn] =

{

0, n odd,
1 · 3 · 5 · · · (n − 1)σn, n even.

Proof: If n is odd it is obvious. So assume n is even.

1√
2πσ

∫ ∞

−∞
e−x2/2σ2

dx = 1 ⇒
∫ ∞

−∞
e−x2/2σ2

dx =
√

2πσ.

Let α =
1

2σ2
. We get

∫ ∞

−∞
e−αx2

dx =
√

π/α.

Take the derivative with respect to α to get

∫ ∞

−∞
−x2e−αx2

dx = −1

2

√
πα−3/2.

Cancel the minus signs and continue taking derivatives to get upon the kth
derivative

∫ ∞

−∞
x2ke−αx2

dx =
1 · 3 · 5 · · · (2k − 1)

2k

√
π√

α2k+1
.

=
1 · 3 · 5 · · · (2k − 1)

2k

√

π(2σ2)2k+1.

Using n = 2k we deduce

1√
2πσ

∫ ∞

−∞
xne−x2/2σ2

dx = 1 · 3 · 5 · · · (n − 1)σn, n even.
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The left hand side of the above result is E [Xn].

Sometimes it is useful to bound probabilities, especially when the probabili-
ties are difficult to calculate or the density and/or the distribution functions
are not even known. The Tchebycheff (Chebyshev) Inequality helps us here.

Theorem: (Tchebycheff Inequality). For any ε > 0,

P (|X − µ| ≥ ε) ≤ σ2

ε2
,

where µ = E(X) and σ2 = V ar(X).

Proof:

P (|X − µ| ≥ ε) =
∫ −µ−ε

−∞
f(x)dx +

∫ ∞

µ+ε
f(x)dx =

∫

|X−µ|≥ε
f(x)dx.

Now

σ2 =
∫ ∞

−∞
(x − µ)2f(x)dx ≥

∫

|X−µ|≥ε
(x − µ)2f(x)dx ≥ ε2

∫

|X−µ|≥ε
f(x)dx.

But,
∫

|X−µ|≥ε
f(x)dx = P (|X − µ| ≥ ε) .

So

P (|X − µ| ≥ ε) ≤ σ2

ε2
.

9.6 Moment Generating Function

The moment generating function has many uses, one of which is to calculate
moments of a random variable.

Definition: Let X be a random variable. The moment generating function

(mgf ) of X is given by

MX(s) = M(s) = E
(

esX
)

.

For X discrete, the mgf of X is

MX(s) =
∑

i

esxiP (X = xi).
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For X continuous, the mgf of X is

MX(s) =
∫ ∞

−∞
esxfX(x)dx.

Recall,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

which converges for all constants x. So,

esx = 1 + sx +
(sx)2

2!
+

(sx)3

3!
+ · · · .

Now

MX(s) = E
(

esX
)

= E

(

1 + sX +
(sX)2

2!
+

(sX)3

3!
+ · · ·

)

.

If we assume the mgf exists then the expectation of the sum is the sum of
the expectations, so

MX(s) = 1 + sE(X) +
s2E(X2)

2!
+

s3E(X3)

3!
+ · · · .

We can also calculate M ′
X(s) by taking the derivative of each term to get

M ′
X(s) = E(X) + sE(X2) +

s2E(X3)

2!
+ · · · .

We set s = 0 to conclude M ′
X(0) = E(X). Also,

M ′′
X(s) = E(X2) + sE(X3) +

s2E(X4)

2!
+ · · · .

We see that M ′′
X(0) = E(X2). Continuing on leads to the following theorem.

Theorem: M
(n)
X (0) = E(Xn).

Note: The mgf in the continuous case is related to the Laplace transform.

9.6.1 Examples

Binomial Case: Say X is binomially distributed with parameters n, p. We
have

P (X = k) =

(

n

k

)

pk(1 − p)n−k, k = 1, 2, 3, . . . , n.
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Then

MX(s) = E
(

esX
)

=
n
∑

k=0

esk

(

n

k

)

pk(1 − p)n−k

=
n
∑

k=0

(

n

k

)

(pes)k (1 − p)n−k

= [pes + (1 − p)]n .

Thus,
MX(0) = [p + 1 − p]n = 1 = E

(

X0
)

= E(1).

M ′
X(s) = n [pes + (1 − p)]n−1 pes.

M ′
X(0) = np = E(X).

M ′′
X(s) = n [pes + (1 − p)]n−1 pes + pesn(n − 1) [pes + (1 − p)]n−2 pes

= np
[

(pes + (1 − p))n−1 es + esn(n − 1) (pes + (1 − p))n−2 pes
]

.

M ′′
X(0) = np[1 + (n − 1)p] = E

(

X2
)

.

So

V ar(X) = E
(

X2
)

− [E(X)]2 = np[1 + (n − 1)p] − (np)2 = np(1 − p).

Normal Case: Here X ∼ N (µ, σ2) .

MX(s) =
1√
2πσ

∫ ∞

−∞
esxe−(x−µ)2/2σ2

dx.

Let w =
x − µ

σ
⇒ x = σw + µ, dx = σdw. Then

MX(s) =
1√
2π

∫ ∞

−∞
es(σw+µ)e−w2/2dw

= esµ 1√
2π

∫ ∞

−∞
e−

1

2
(w2−2σsw)dw

= esµ 1√
2π

∫ ∞

−∞
e−

1

2
((w−σs)2−σ2s2)dw

= esµ+σ2s2/2 · 1√
2π

∫ ∞

−∞
e−

1

2
(w−σs)2dw.
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Let v = w − σs, dv = dw to get

MX(s) = esµ+σ2s2/2 · 1√
2π

∫ ∞

−∞
e−v2/2dv.

But,
1√
2π

∫ ∞

−∞
e−v2/2dv = 1

since it is a density function for a mean zero, unit variance random variable
(standard normal). Thus,

MX(s) = esµ+σ2s2/2.

Note: For the normal case we have

M ′
X(s) =

(

µ + σ2s
)

esµ+σ2s2/2

and
M ′

X(0) = µ = E(X).

The mgf for a random variable may not exist for any s since some random
variables such as the Cauchy do not have finite moments. X is Cauchy if it
has pdf

f(x) =
α

π (α2 + x2)
, x ∈ R, α > 0.

However, the characterisitc function for a random variable always exists.

9.7 Characteristic Functions

Definition: Let X be any random variable. The characteristic function (cf )
of X is given by

ΦX(ω) = E
(

eiωX
)

.

Now
ΦX : R 7→ C

by the rule

ΦX(ω) = E(cos ωX + i sinωX) = E(cosωX) + i(sinωX).
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ΦX(ω) is defined ∀ ω ∈ R.

For X discrete, the cf of X is

ΦX(ω) =
∑

k

eiωxkP (X = xk).

For X continuous, the cf of X is

ΦX(ω) =
∫ ∞

−∞
eiωxfX(x)dx.

Note: The cf in the continuous case is related to the Fourier transform. In
fact, we can use the inversion formula of the Fourier transform to conclude

fX(x) =
1

2π

∫ ∞

−∞
ΦX(ω)e−iωxdω.

One can also relate the moments of a random variable (when they exist) to
its cf as was done for the mgf.

9.8 Special Moment Functions

Definition: If X is a random variable taking integer values, then its moment

function is given by
Γ(z) = E

(

zX
)

=
∑

i

piz
i

where pi = P (X = i).

We compute

Γ′(z) =
d

dz

(

∑

i

piz
i

)

=
∑

i

ipiz
i−1.

So
Γ′(1) =

∑

i

ipi = E(X).

Note: Changing the order of differentiation and summation (as was done
above) is okay as long as |z| < radius of convergence for

∑

i piz
i.

If we continue to differentiate we get

Γ(k) = E [X(X − 1) · · · (X − k + 1)] .
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Special Case: If X is discrete taking values 0, 1, 2, . . . the probability gener-

ating function of X is the function

GX (s) = E
(

sX
)

, s ∈ R,

or

GX(s) =
∞
∑

i=0

siP (X = i).

This function is used extensively in characterizing random walks and branch-
ing processes.

9.9 Applications of Characteristic Functions

In addition to providing a moment theorem as with the mgf, the cf can aid
us in finding the density function of Y = g(X).

Recall
ΦX(ω) =

∫ ∞

−∞
eiωxfX(x)dx = E

(

eiωX
)

.

Let Y = g(X). Then,

ΦY (ω) =
∫ ∞

−∞
eiωyfY (y)dy = E

(

eiωY
)

= E
(

eiωg(X)
)

.

So
ΦY (ω) =

∫ ∞

−∞
eiωg(x)fX(x)dx.

If we can write ∫ ∞

−∞
eiωg(x)fX(x)dx

as ∫ ∞

−∞
eiωyh(y)dy

then fY (y) = h(y).

Example: Suppose X ∼ N (0, σ2). Let Y = αX2, α ∈ R, α 6= 0. Then

ΦY (ω) =
∫ ∞

−∞
eiωαx2

fX(x)dx =
∫ ∞

−∞
eiωαx2 1√

2πσ
e−x2/2σ2

dx

=
2√
2πσ

∫ ∞

0
eiωαx2

e−x2/2σ2

dx.
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Let y = αx2, dy = 2αxdx = 2
√

αydx. Then

ΦY (ω) =
2√
2πσ

∫ ∞

0
eiωye−y/2ασ2 1

2
√

αy
dy

or

ΦY (ω) =
∫ ∞

−∞
eiωy 1

σ
√

2παy
e−y/2ασ2

U(y)dy

where,

U(y) =

{

1, y ≥ 0,
0, else.

Thus,

fY (y) =
1

σ
√

2παy
e−y/2ασ2

U(y).
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