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9.0 Functions of One Random Variable

Often we are concerned with functions of a random variable [recall a random
variable itself is a function of the outcome of an experiment|. If y = g(x) is
a real-valued function then Y = ¢(X) is a random variable. Given fx(z) or
Fx(x) we seek fy(y) and Fy(y).

Definition: Let C be an event (some subset) associated with the range
space of Y, Ry. Define B C Rx as

B={x € Rx:g(zx)eC}.
Then, B and C are called equivalent events (B occurs if and only if C' occurs).

Definition: Let X be a random variable defined on the sample space ).
Let Rx be the range space of X. Let g be a real-valued function and com-
pute the random variable Y = g(X) with range space Ry. For any C' C Ry
define

P(C)=P{r € Rx:9(x)eC}).

Note
P(C)=P({we:g(X(w)) eC}).

Example: Let X be a continuous random variable with pdf

e x>0
0, elsewhere.

=1
Let g(x) = 2z + 1. Then Rx = {z: x > 0} while Ry = {y :y > 1}. Define

theevent C'as C = {Y >5},ie.,C ={w:¢g(X(w)) >5} ={w:Y(w) > 5}.
Now y > 5iff 2e+1 > 5 iff x > 2. So C is equivalent to B = {X > 2}. Now

P(X >2)= /oo e dr = e?
2

SO
P(Y >5)=¢2



9.1 Finding the Distribution of g(X)

9.1.1 Discrete Case

General Procedure:

1) First we consider the case where X is discrete and Y is discrete.

Let 1, %2, . . . represent the X-values having the property g(x;;) = vi, V j.
Then

fry) = PY =y) =P(X =xa) + P(X =z32) + - -
= fx(zia)+ fx(zi2) + -

i.e., to evaluate the probability of the event {Y = y;}, find the equivalent
event in terms of X and add all the corresponding probabilities together.

Example: Let X have possible values 1,2, 3, ... and

P(X=n)=(1/2)", n=1,2,....

Let
1, x is even
Y= { —1, xis odd.
PY=1) = P(X=2)+PX =4)+---=(1/2*+(1/2)" +---
= 2 (/2" =3 (1/4)" =1 i/fM =1/3
and

P(Y=-1)=1-P(Y =1) = 2/3.

2) It may turn out that X is a continuous random variable while Y is discrete.
For example, X may assume all real valuesand Y =1if X > 0and Y = —1
if X <0. SoPY =1)=P(X >0)and PY = —-1) = P(X <0). In
general, if {Y = y;} is equivalent to an event, say A, in the range space of
X, then

fr(y) = P(Y =y) = /A fx(@)de.
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9.1.2 Continuous Case

Here X is a continuous random variable and ¢ is a continuous function. So,
Y = g(X) is a continuous random variable. We seek the pdf of Y, i.e., fy (y).

General Procedure:

i. Obtain Fy(y) = P(Y < y) by finding the event A (in the range space
of X) which is equivalent to the event {Y < y}.

ii. Differentiate Fy (y) to get fy(y).
iii. Determine those values in the range space of Y for which fy(y) > 0.

Example: Let

2¢, 0<z <1,
0, elsewhere.

fx(z) = {

Let g(x) = 3z + 1. Then

Thus,
2
frly) = Fy(y) = 5y = 1).
Now fx(z) > 0 for 0 < x < 1, therefore fy(y) > 0 for 1 < y < 4.

There is another way of getting the same result. Consider

Fe(y) = P(Y <9) = PEX +1<9) = P(x < L) = pe (12),

3
Then,
d d y—1\ dFy(y)du  dFx(u)du
= — - _F =
fr () dyFY( y) = dy X( 3 ) du dy  du dy



where u = (y — 1)/3. So,

du y—1\1 2
(Y )2y,
dy (3 )3 g1

The following theorem is very useful if the conditions of the theorem are met.

h@=%w%=hw

Theorem: Let X be a continuous random variable with pdf fx(z) > 0
for a < x < b. Suppose that y = g(z) is a strictly monotone (strictly increas-
ing or strictly decreasing) function of z. Assume that g is differentiable (and
hence continuous) for all z. Then Y = ¢(X) has pdf

dx

fr(y) = fx(x) @’

where x is expressed in terms of y, i.e., z = g~ !(y). Hence.

o) = g (57 ) |22

If g is increasing then g is nonzero for those values of y satisfying g(a) < y <
g(b). If g is decreasing then g is nonzero for y satisfying g(b) < y < g(a).

Proof: First assume ¢ is a strictly increasing function. Then

Fy(y)=P(Y <y)=P(gX)<y)=P(X <g7'(y)) = Fx (67" ().

Thus,
. dFy(l’)d_[L’ . de(l’)d_[L’

) de dy de dy
where x = g71(y). Hence,
fr(y) = fX(I)Z—; = fx(z) Z—;’

Now assume g is a strictly decreasing function. Then,

Fy(y) = P(Y <y)=P(gX)<y)=P(X>g7'(»))
= 1-P(X<g') =1-Fx(s7W).



So,
dFy(y) _ dFy(y)de

dy dr @? z=g"'(y)
or ; ; ]
fr(y) = ar [1— Fx(z)] £ = —fx(z)é.

dx
But, T < 0 since g(x) is strictly decreasing. Hence,
Y

dx

fr(y) = fx(x) @’

Note: If y = g(z) is not a strictly monotone function of x, we cannot apply
the above theorem directly but we can still use the general method.

Example: Suppose

Y

1
3 —-l<x<l,
fx(z) =

0, elsewhere.

Let g(z) = 2%, This function is not monotone over the interval (-1, 1). Here

Fy(y) = PY <y)=PX*<y)=P(—/y<X <y
= Fx(vy) — Fx(=y) + P(X = —/y).

Thus,

fol) = B I () + (-

or

1 /1 1 1
f’”(y):ﬁ(Ti):m’ 0<y<l.

The result obtained in this example gives the following theorem.

Theorem: Let X be a continuous random variable with pdf fx(z). Let
Y = X2. Then the pdf of Y is

frly) = % (V) + Fx(—va)].



Example: Suppose

Frlz) = 322, 0<x<1,
X\ 0, elsewhere.

Let Y = ¢=X = g(X). Note that g(x) is monotone in [0, 1]. Thus,

) = fx (57 W) | 7707 )]

gz)=eTory=e=-—r=lhy=z=—-Iny=g"'(y).
Thus,
-1 1
fr(y) = 3(~ny)?| —| =3(my)*.
Yy Yy
Endpoints: 1 =0=y=1, o =1=y=-¢"'. So,
1
3(lny)2_> 6_1 S Yy S 17
fr(y) = Y
0, elsewhere.

Inverse Problem:

i. Given a random variable X with distribution function Fx(z), find g(z¢)
so that U = ¢g(X) is uniform in (0, 1).

Claim g(zo) = Fx(x¢) works.

Proof:

FU(U(]) = P(U S U(]) = P(X S [L’Q) = FX([L’Q) = Uyg.

ii. Given a random variable U ~ U(0, 1), find g(uo) so that Y = ¢g(U) has
some desired distribution function Fy (yp).

Claim g(uo) = Fy '(ug) works.

Proof:

Y =F"'U)& PY <y)=PF"(U) <yo) =P (U < Fy(yo)) = Fy(yo)-



iii. Given X with distribution function Fx(zo), find g(zo) so that ¥ =
g(X) has some desired distribution function Fy (yo).

Claim g(z0) = Fy ' (Fx(0)) works.

Proof:
Y = FY'(Fx(X)) & PY <y) = P(Fy (Fx(X)) < yo) = P (Fx(X) < Fy (o))
= Fy(yo) since Fx(X) is U(0,1) from (i) above.
Example: Say X ~ U(0,1). We desire a distribution function

1- 6-!/0’ Yo 2 07
0, elsewhere.

Fy(yo) = {
Find yo = g(o).

Solution: Using (ii) above we let g(x¢) = Fy*(2). We then solve yo = Fy ' ()
to get zg = Fy(yo), so set xg = 1 — e %. Hence, yo = —In(1 — x¢) and thus
g(xo) = —In(1 — xp).

9.2 Expectations

Often we would like to know the mean (or average or expected value) of a
random variable resulting from a random experiment.

9.2.1 Discrete Case

Say X has values in {x, 29, x3,...} and P(X = z;) = f(x;) = pi.
Definition: The expected value of X is given by

E(X) = Zifzf(%)
whenever this sum exists.

Recall f(z;) > 0 and ¥, f(x;) = 1. So, E(X) is the average of the val-
ues of X with each value weighted according to its probability of occurrence.



Lemma: E[g(X)] = 3, g(z:) fx(x;) where fx(z;) = P(X = z;) = p;.

Proof: Let Y = g(X), then E[g(X)] = E(Y) = > vify (yi). Now
Zg (@) fx () = Z (Zg () fx( %))

where the inner sum is over all indices j for which g(z;) = y;, for some fixed
y;. Thus, all the terms g(x;) are constant in the inner sum. Hence,

Zg Z; fX xz Zyzz.fX xy

But,
S fxlwg) = S PIX =) = POY = 1) = fir(wo)
J J
So,
Z (xz fX zz Zysz yz
Theorem:

a. X >0= EX)>0.
b. E(aX +0Y) =aE(X)+bE(Y).
c. B(1)=1.

Proof: Easy. Left as an exercise.

Note: Part (a) of this theorem implies expectation is a linear operator.

9.2.2 Continuous Case

Definition: The expected value of X is given by

E(X)= /OO xfx(x)dx

—0o0

whenever this integral exists.



Example: Say X has pdf

Fr(z) = 322, 0<x <1,
X\ 0, elsewhere.

Then,

E(X) = /01 (322)dz = 3/4.

Lemma: E[g(X)] = [, g(x) fx(z)dr.
Proof: Omitted.

Theorem:
a. X > 0= FE(X) >0.
b. E(aX +b0Y) =aE(X)+bE(Y).
c. B(1)=1.

Proof: Easy. Left as an exercise.

9.3 Variance

The variance measure gives us an indication of the spread of the data about

1ts mean.

Notation: The variance of X is written Var(X) or 0% or 2.

9.3.1 Discrete Case

Definition: The variance of X is given by

Var(X) = Z(% — 1)? fx ()

i

where p = E(X). Thus, Var(X) = E[(X — p)?].
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9.3.2 Continuous Case

Definition: The variance of X is given by

Var(X) = [ (¢ = p)*fx(2)de

—0o0

where = E(X). Again, Var(X) = E[(X — p)?].

9.4 Examples and Additional Results

Theorem: Let X be binomially distributed with parameters n,p (write
X ~ B(n,p)). Then E(X) = np.

Proof:

i. Direct proof.

So,

Let s =k — 1. Then

EX) = X

11



Recall the binomial theorem:
(a+b)"=>" (n) atbo
iz \k
Replace n by n — 1, let a =p, b=1—p to get
n—1 = n—1 k n—1-k
L=lp+0=p" =2 { , Jp'-p" "
k=0

Therefore,

and thus E(X) = np.

ii. Quick proof.
Think of X as the number of successes in n Bernoulli trials. Let X; be
the number of successes on the ith trial. Then,

Hence,
EX)=1-p+0-(1—p) =p.
Now,
X=X +Xo+ -+ X,.
So,

EX)=EX + - +X,) = E(Xy) + - + E(X,)
=p+--+p=np.
Example: Say X has pdf

Fr(z) = 2¢, 0<z <1,
X\ = 0, elsewhere.

Let Y = g(X) = 3X + 1. Find E(Y).

Previously, (see section 9.1.2) we derived

fy<y>={§<y‘1>’ bevsd

0, elsewhere.
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So,

or (without finding the pdf of Y),
E(Y) = Elg(X)] = /01(3:5 + 1) (20)dx = 3.
Theorem: Var(X) = E (X?) — [E(X)]2.
Proof:
Var(X) = E[(X - )| = E[X* = 2Xp+

= B (X?) = 2uB(X) + 2

= E(X*) - [E(X)P
since p = E(X).

Properties of Variance:

i. If ¢ is a constant, Var(X + ¢) = Var(X).

Proof:

Var(X +¢) = E{[(X+c) = E(X +¢)*}
= B{X+c-E(X) -}
= EB{X-EX)}
= Var(X).

ii. If ¢ is a constant, Var(cX) = *Var(X).

Proof: Exercise.

Lemma: If X is discrete and takes values 1,2,3, ..., then

E(X) = fj P(X > n).

n=0

13



Proof: Let p; = P(X =1i). Then

P(X>0) =p1 + p2 + p3 + -+ + o +
P(X>1) = P2 + p3 + - 4+ pp +
P(X >2) = ™ottt
P(X >k) = Pr1 +

By summing along the rows we find the total in the array is

i P(X > n).

n=0

By summing along the columns we find the total in the array is
p1+2p2 +3ps+ -+ kpp+ -

Thus equating these last results we get

S P(X >n)=pi+2p2+3ps+ -

n=0

An Interpretation of Expectation:

Suppose we measure the squared distance between a random variable X and
a constant b by (X — b)% Let us find b that minimizes E[(X — b)?|, which
gives us a predictor of X. (We do not try to find a b that minimizes (X — b)?
since such a b would depend on X so we could not use it as a predictor.)

Consider

BIX =02 = [ (0= b fx(@)do.
Set p q oo
SEI(X b =0= %/_oo(a; — )2 fy(z)dz = 0.

14



We can solve this if we can exchange the order of differentiation and integra-
tion (justification, in general, requires measure theory concepts). Assuming
okay, we get

/°° —2(x —b) fx(z)dr =0 = /_Z zfx(z)dr = b/_Z fx(z)dz.

—0o0

But o
/_OO fx(z)dx =1
thus ~
b:/ rfx(z)dr = E(X).

—0o0

We can get this same result another way as follows:
E[(X-b? = E[(X-E(X)+EX)-b)?
= E[((X - E(X)) + (E(X) - b))?]
= E[(X - B(X)?] + 2B (X — E(X))(E(X) - b)] + E [(E(X) —b)?].
Now (E(X) — b) is a constant so

E[(X - EX)(EX) -b)] = (BX)-bE[X - EX))]

E[(X =0 = B[(X - B(X))?] + (B(X) - b).

We have no control over F[(X — E(X))?] since there is no b in this expres-
sion. Thus, E[(X — b)?] is minimized if we minimize (F(X) — b)?. Since
(E(X) — b)? > 0 this term is minimized if b = F(X). Hence,

min B (X =b)’] = E[(X - BE(X))?].

9.5 Moments

Definitions: For £k =1,2,3, ..., the kth moment of X is

my, = E | X*]

15



and the kth central moment of X is
e = E[(X = B(X))].

Note: The 2nd central moment of X is the variance of X, Var(X) = o%.

The standard deviation of X is ox = \/o%.

Normal Case: Consider the mean-zero normal density

1
fla) = ——=e >
2no
Claim: For n > 1,

0, n odd,
1-3-5---(n—1)0™, n even.

E[X"] = {
Proof: If n is odd it is obvious. So assume n is even.

1 o0 o0
/ e T2 g — 1 = / e~ T/20% 1y — vV oro.
2w J—o0 —0

1
Let « = —. We get
202 -
/ e dy = \/ 7T/

Take the derivative with respect to a to get

00 1
/ —xe " dy = —iﬁa_s/z.

Cancel the minus signs and continue taking derivatives to get upon the kth
derivative

1:3:5--(2k—1) 7

2k Va2k+1l
1-3-5---(2k—1
= 2k( ) T(202)2k+1,

ok 2
/ e dr =
—0Q

Using n = 2k we deduce

1 00
/ 2" 2y =1-3-5--- (n—1)0™, n even.
2n0 J-o0
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The left hand side of the above result is £ [X™].

Sometimes it is useful to bound probabilities, especially when the probabili-
ties are difficult to calculate or the density and/or the distribution functions
are not even known. The Tchebycheff (Chebyshev) Inequality helps us here.

Theorem: (Tchebycheff Inequality). For any € > 0,

2
P(IX—pu>e<Z
€

27

where p = E(X) and % = Var(X).

Proof:
—H—€ 00
PUX=pzq=[ " f@yet [~ jade= [ fayr
Now
o= /_OO(:E — )’ f(a)dr > |X_H|26(:c — )2 f(x)dr > € /IX—HIZE flz)dz.
But,
[ f@yde=P(X - =),
| X —pl>e
So

2
o
P(|X_,U|2€)§E—2-

9.6 Moment Generating Function

The moment generating function has many uses, one of which is to calculate
moments of a random variable.

Definition: Let X be a random variable. The moment generating function
(mgf) of X is given by

Mx(s) = M(s) = E (e¥).
For X discrete, the mgf of X is
Mx(s) =Y e P(X = ;).

17



For X continuous, the mgf of X is
Mx(s) = / e** fx(x)dx.
Recall,
2 .3
e :1+z+§+§+---
which converges for all constants z. So,

(52, (s0°

e :1+sa:—|—T_|_ 2 4o
Now
X)? X)3
MX(s):E(eSX):E<1—|—5X+($2') —|-($3') _|_>

If we assume the mgf exists then the expectation of the sum is the sum of
the expectations, so

SE(X?)  SE(XY)

Mx(s) =14+ sE(X) + o + 3 4.
We can also calculate M’ (s) by taking the derivative of each term to get
My (s) = E(X) + sE(X?) + % +-
We set s = 0 to conclude M% (0) = E(X). Also,
My (s) = BE(X?) + sBE(X?) + SEXT) SRS

2!
We see that M%(0) = E(X?). Continuing on leads to the following theorem.

Theorem: M{"” (0) = E(X™).
Note: The mgf in the continuous case is related to the Laplace transform.

9.6.1 Examples

Binomial Case: Say X is binomially distributed with parameters n,p. We
have

P(X =k) = (Z)pk(l )k k=1,2,3,...,n.
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Then

Thus,
Mx(0)=[p+1-p"=1=E(X") = E(1).

M (s) = npe* + (1 —p)]" ™" pe’.
M5 (0) = np = E(X).
MY(s) = nlpe*+ (1 —p)]" " pe* + pe'n(n — 1) [pe* + (1 — p)"~* pe*
= np[(pe+ (1=p)" " e+ en(n — 1) (pe* + (1 —p))" “pe’] .
M3(0) = np[l + (n — 1)p] = E (X?).
So

Var(X) = E (X?) = [E(X)] = np[l + (n — 1)p] — (np)* = np(1 — p).

Normal Case: Here X ~ N (u,0?%).

1 o]
Mx(s) = 2%0/ st~ (@=1)*/20 qg.
T— W
Let w = = 2 =ow + i, dr = odw. Then
o
My(s) = / ) o= 2 gy
\/27‘(‘

oS —E(w —2crsw)d,w
V4 27r

_ —l (w—crs)z—crzsz)

= e 2 dw
\/ 2w

— eouto?s?/2, —5(w=09)" gy,

L
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Let v =w — 0s, dv = dw to get

Mx(s) = e+e"/2. gy

1 00
— e
V2T /—oo
But,
2y =1

1 00
—— [ e
V2T J—c0
since it is a density function for a mean zero, unit variance random variable
(standard normal). Thus,

My (s) = eshto?s?/2.
Note: For the normal case we have
M (s) = (,u + 025) esito?s?/2
and

M (0) = 1 = E(X).

The mgf for a random variable may not exist for any s since some random
variables such as the Cauchy do not have finite moments. X is Cauchy if it
has pdf

fx) =

However, the characterisitc function for a random variable always exists.

W,I’ER,Q>O.

9.7 Characteristic Functions

Definition: Let X be any random variable. The characteristic function (cf)
of X is given by '
Ox(w)=FE (e“"X) .

Now
@XZR’—)C

by the rule

Oy (w) = F(coswX +isinwX) = E(coswX) + i(sinwX).

20



®x(w) is defined V w € R.

For X discrete, the c¢f of X is

Note: The ¢f in the continuous case is related to the Fourier transform. In
fact, we can use the inversion formula of the Fourier transform to conclude

fx(x) i/oo Oy (w)e ™ dw.

:27'(' —00

One can also relate the moments of a random variable (when they exist) to
its ¢f as was done for the mgf.

9.8 Special Moment Functions

Definition: If X is a random variable taking integer values, then its moment
function is given by '

I'(z)=F (ZX) => pi2
where p; = P(X =1).

We compute

I'(z) = % (Z pizi> = ipi2

So
I'(1) => ipi = BE(X).

7

Note: Changing the order of differentiation and summation (as was done
above) is okay as long as |z| < radius of convergence for Y, p;z°.

If we continue to differentiate we get

' =EX(X-1)--- (X —k+1)].
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Special Case: If X is discrete taking values 0,1, 2, ... the probability gener-
ating function of X is the function

or

Gx(s) = 2siP(X =1).

This function is used extensively in characterizing random walks and branch-
ing processes.

9.9 Applications of Characteristic Functions

In addition to providing a moment theorem as with the mgf, the ¢f can aid
us in finding the density function of Y = g(X).

Recall -
by (w) = /OO e“ fy(r)dr = E (ei“X) :

Let Y = g(X). Then,
Py (w) = /_ eiwyfy(y)dy —E (6ti) B (6iwg(X)) ‘
So .
Dy(w) = [ e f(a)da.
If we can write o
/ 9" fy (z)dw
as .
/_oo " h(y)dy
then fy(y) = h(y).

Example: Suppose X ~ N (0,02). Let Y = aX? a € R, a # 0. Then
1
2

2ro

Py (w) = / 6i“am2fx($)dx=/ e e 27

2 oo 2 . 2/9 2
— / elwaz® o~ /20 dr.
2wo Jo
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Let y = ax?, dy = 2axdr = 2 /aydz. Then

or

where,

Thus,

2 0 1
Oy (w) = / ewye_y/zagz—dy

2mo Jo 2\/ay
by () = [ e U )y
—o0 oy 2may
_ )L y=0,
Uly) = { 0, else.
1 —y/2a0?
fr(y) = € Uly).

oy 2may
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