EE 464

Spring 2003

Lecture Notes Part 8c

Christopher Wayne Walker, Ph.D.

8.6 Conditional Distribution and Density Functions

8.6.1 Definitions and Derivations

Sometimes we wish to know probabilities of certain events associated with the random variable X given knowledge concerning those events.

Example: Roll a fair die. Then

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Let X equal the face value of the die. Then

$$P(X = i) = 1/6, i = 1, 2, \dots, 6.$$

But

$$P(X = 1|X \text{ is even}) = 0, P(X = 2|X \text{ is even}) = 1/3.$$

Let A be the event that X = 2. Let B be the event that X is even.

<u>Note:</u> Events are defined as subsets of the sample space to which we can assign probabilities. Since we define a random variable as a deterministic function given the outcome of an experiment we can equivalently relate random variables to events. So, it makes sense to say "A is the event X = 2" which really means "A is the event of getting 2 on the roll of a die in which case X = 2."

Now

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(X = 2, X \text{ is even})}{P(X \text{ is even})}$$
$$= \frac{P(X = 2)}{P(X \text{ is even})} = \frac{1/6}{1/2} = 1/3.$$

Note: $\{\omega: X(\omega) = 2\} \subset \{\omega: X(\omega) \text{ is even}\}\ \text{so}$

$$P(\{\omega : X(\omega) = 2\} \cap \{\omega : X(\omega) \text{ is even}\}) = P(\{\omega : X(\omega) = 2\}) = P(X = 2).$$

<u>Definition:</u> The conditional distribution F(x|M) of the random variable X, given the event M occurs, is defined as

$$F(x|M) = P(X \le x|M) = \frac{P(X \le x, M)}{P(M)}$$

where $P(M) \neq 0$.

Properties:

i.
$$F(\infty|M) = P(X \le \infty|M) = 1$$
, $F(-\infty|M) = P(X \le -\infty|M) = 0$.

ii.
$$P(x_1 < X \le x_2 | M) = P(X \le x_2 | M) - P(X \le x_1 | M)$$

$$= F(x_2 | M) - F(x_1 | M) = \frac{P(X \le x_2, M)}{P(M)} - \frac{P(X \le x_1, M)}{P(M)}$$

$$= \frac{P(x_1 < X \le x_2, M)}{P(M)}.$$

<u>Definition:</u> The conditional density f(x|M) is the derivative of F(x|M) with respect to x, i.e.,

$$f(x|M) = \frac{dF(x|M)}{dx} = \lim_{\Delta x \to 0} \frac{P(x < X \le x + \Delta x|M)}{\Delta x}.$$

Special Cases

i. Let M be the event $\{X \leq a\}$ where $P(X \leq a) \neq 0$. Then,

$$F(x|M) = F(x|X \le a) = P(X \le x|X \le a) = \frac{P(X \le x, X \le a)}{P(X \le a)}.$$

If $x \ge a$ then

$$\{X \le x, X \le a\} = \{\{X \le x\} \cap \{X \le a\}\} = \{X \le a\}$$

which implies

$$F(x|X \le a) = \frac{P(X \le a)}{P(X \le a)} = 1.$$

If x < a then

$$\{X \leq x, X \leq a\} = \{X \leq x\}$$

which implies

$$F(x|X \le a) = \frac{P(X \le x)}{P(X \le a)} = \frac{F(x)}{F(a)}.$$

Now

$$f(x|X \le a) = \frac{dF(x|X \le a)}{dx}$$

SO

$$f(x|X \le a) = \begin{cases} 0, & x \ge a \\ \frac{f(x)}{F(a)}, & x < a. \end{cases}$$

ii. Let M be the event $\{b < X \le a\}$ where $F(a) \ne F(b)$. Then,

$$F(x|b < X \le a) = \frac{P(X \le x, b < X \le a)}{P(b < X \le a)}.$$

If $x \ge a$ then

$${X \le x, b < X \le a} = {b < X \le a}$$

which implies

$$F(x|b < X \le a) = \frac{F(a) - F(b)}{F(a) - F(b)} = 1.$$

If $b \le x < a$ then

$$\{X \leq x, b < X \leq a\} = \{b < X \leq x\}$$

which implies

$$F(x|b < X \le a) = \frac{F(x) - F(b)}{F(a) - F(b)}.$$

If x < b then

$$\{X \le x, b < X \le a\} = \emptyset$$

which implies

$$F(x|b < X \le a) = 0.$$

Thus

$$f(x|b < X \le a) = \begin{cases} \frac{f(x)}{F(a) - F(b)}, & b \le x < a \\ 0, & else. \end{cases}$$

Examples of conditional distribution calculations will be given in class.