EE 464

Spring 2003

Lecture Notes Part 3b

Christopher Wayne Walker, Ph.D.

3.2 Probability Space

Let Ω be a sample space with F a σ -field. We wish to assign a number P(A) to each event A representing the likelihood the event will occur.

Consider two motivations for P(A).

i. Ω is finite with all outcomes equally likely. Take

$$P(A) = \frac{\text{number of elements in } A}{\text{number of elements in } \Omega}.$$

Note: $P(\emptyset) = 0$, $P(\Omega) = 1$, $0 \le P(A) \le 1$. If A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$P(A \cup B) = \frac{\text{number of elements in } A + \text{number of elements in } B}{\text{number of elements in } \Omega}$$
$$= P(A) + P(B).$$

ii. Ω is countably infinite. Repeat the experiment many times. Take

$$P(A) = \lim_{n \to \infty} \frac{\text{number of occurrences of } A \text{ in } n \text{ trials}}{n}.$$

Definition: A probability measure P on (Ω, F) is a function

$$P: F \rightarrow [0, 1]$$

that maps

.

$$A \mapsto P(A)$$

that satisfies the following axioms of probability:

i. $P(\emptyset) = 0$, $P(\Omega) = 1$, $0 \le P(A) \le 1$ (redundant)

ii. If A_1, A_2, \ldots is a sequence of pairwise disjoint events then

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

The triple (Ω, F, P) is called a *probability space*.

<u>Remark</u>: If we take $A_3 = A_4 = \cdots = \emptyset$ in (ii) above we get

ii'. $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

(ii') is called *finite additivity*. (ii) is called *countable additivity*.

Some consequences of the above will be presented in class.

Examples of Probability Spaces:

i. Ω is finite with all outcomes equally likely. $F = \sigma$ -field= all subsets of Ω . Take

$$P(A) = \frac{\text{number of outcomes in } A}{\text{number of outcomes in } \Omega}$$

ii. Ω is finite, $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$, $F = \sigma$ -field= all subsets of Ω . Say, $P(\{\omega_i\}) = P(\omega_i) = p_i$, where p_1, p_2, \ldots, p_n satisfy $p_i \ge 0$ for all i and $p_1 + p_2 + \cdots + p_n = 1$. Take

$$P(A) = \sum_{i:\omega_i \in A} p_i.$$

iii. Ω is countably infinite, $\Omega = \{\omega_1, \omega_2, \ldots\}, F = \sigma$ -field= all subsets of Ω . Say, $P(\{\omega_i\}) = p_i$, where p_1, p_2, \ldots satisfy $p_i \ge 0$ for all i and $p_1 + p_2 + \cdots = 1$. Take

$$P(A) = \sum_{i:\omega_i \in A} p_i.$$

iv. $\Omega = [0, 1]$. Let $A \subset \Omega$. It is sensible to take

$$P(A) = \frac{\text{length of } A}{\text{length of } \Omega}.$$

This is okay for A consisting of a collection of intervals but not for all subsets of Ω . We can find a "bad" A (will show later).