EE 464

Spring 2003

Lecture Notes Part 3a

Christopher Wayne Walker, Ph.D.

3.0 Probability Measure

3.1 Sample Space and Events

<u>Definition:</u> The sample space Ω is the set of all possible outcomes of a random experiment.

<u>Definition:</u> An *event* is a (particular kind of) subset of the sample space (this will be clarified later by showing that not all subsets are allowed to be events).

Examples:

i. Choose an integer between 1 and 5. Then

$$\Omega = \{1, 2, 3, 4, 5\}.$$

We see that $\{2, 4\}$ is the event that an even number was chosen.

ii. Choose a real number in the interval [0, 1]. Then

$$\Omega = [0, 1].$$

Note that Ω is uncountable (cannot be put into a 1-1 correspondence with the integers) and not every subset is an event (we will prove this later). But any open or closed subset of [0, 1] is an event, in particular, any subinterval of [0, 1] is an event.

Rules for Events

- i. \emptyset and Ω are events.
- ii. If **A** and **B** are events then so are $\mathbf{A} \cap \mathbf{B}$, $\mathbf{A} \cup \mathbf{B}$, $\mathbf{B} \setminus \mathbf{A}$ and $\overline{\mathbf{A}} = \Omega \setminus \mathbf{A}$ (note: $b \in \mathbf{B} \setminus \mathbf{A}$ iff $b \in \mathbf{B}$ but $b \notin \mathbf{A}$). $\mathbf{B} \mathbf{A}$ is also written for $\mathbf{B} \setminus \mathbf{A}$.
- iii. If A_1, A_2, \ldots , are events then so are

$$A_1 \cup A_2 \cup \cdots = \bigcup_{n=1}^{\infty} \mathbf{A}_n$$
 and $A_1 \cap A_2 \cap \cdots = \bigcap_{n=1}^{\infty} \mathbf{A}_n$.

Remarks

i.
$$\overline{\Omega} = \emptyset$$
.

ii.
$$\mathbf{A} \cup \mathbf{B} \cup \emptyset \cup \emptyset \cup \cdots = \mathbf{A} \cup \mathbf{B}$$
.

iii.
$$\mathbf{A} \cap \mathbf{B} = \Omega \setminus \left(\overline{\mathbf{A}} \cup \overline{\mathbf{B}} \right) = \overline{\overline{\mathbf{A}} \cup \overline{\mathbf{B}}}.$$

iv.
$$A \setminus B = A \cap \overline{B}$$
.

v. $\mathbf{A} \triangle \mathbf{B} := (\mathbf{A} \setminus \mathbf{B}) \cup (\mathbf{B} \setminus \mathbf{A})$ (this is the definition of symmetric difference).

<u>Definition:</u> Let **X** be a nonempty set. An *algebra* of sets on **X** is a nonempty collection $A \in P(\mathbf{X})$ which is closed under finite unions and complements, i.e.,

i. if
$$E_1, E_2, \ldots, E_n \in A$$
 then $\bigcup_{k=1}^n E_k \in A$.

ii. if
$$E \in A$$
 then $\overline{E} \in A$.

<u>Definition:</u> A σ -algebra (or σ -field) is an algebra which is closed under countable unions. So, a collection F of subsets of \mathbf{X} is called a σ -field if

i.
$$\emptyset \in F$$
.

ii.
$$A_1, A_2, \ldots \in F \Rightarrow \bigcup_{k=1}^{\infty} A_k \in F.$$

iii.
$$A \in F \Rightarrow \overline{A} \in F$$
.

<u>Definition:</u> A metric d on a nonempty set X is a function $d: X \times X \to R$ satisfying

i.
$$d(x,y) \ge 0 \ \forall \ x,y \in \mathbf{X} \text{ and } d(x,y) = 0 \Rightarrow x = y.$$

ii.
$$d(x,y) = d(y,x) \ \forall \ x,y \in \mathbf{X}$$
.

iii.
$$d(x,y) \le d(x,z) + d(z,y) \ \forall \ x,y,z \in \mathbf{X}$$
 (triangle inequality).

The pair (\mathbf{X}, d) is called a *metric space*.

<u>Definition:</u> Let (\mathbf{X}, d) be a metric space. If $x \in \mathbf{X}$ and r > 0, the *open ball* of radius r about x is

$$B(r, x) = \{ y \in \mathbf{X} : d(x, y) < r \}.$$

<u>Definition:</u> A set $E \subset \mathbf{X}$ is *open* if for every $x \in E$ there exists r > 0 such that $B(r, x) \subset E$.

<u>Definition:</u> A set is *closed* if its complement is open.

<u>Definition:</u> If (\mathbf{X}, d) is any metric space, the σ -field generated by the family of open sets in \mathbf{X} is called the *Borel* σ -field, denoted by $B_{\mathbf{X}}$. Its members are called Borel sets.

Special case: When X = R (the real line), we have B_R .