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11.4 Conditional Expected Values

Definition: The conditional mean of g(Y) given X < x is given by

Elg(Y)|X <] = /Oo g) f(y|X < x)dy.

— 00

Definition: The conditional mean of g(Y) given X = z is given by

ElgW)IX =2l = [ ) f(yl)dy.
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In particular, we have the conditional mean of Y given X =z
pvix = EYIX =2l = [~ yf(yle)dy
and the conditional variance of Y given X =z
oyix = E [(Y — pyix)?X = flf} = /O:O(?J — pvy)* f(ylz)dy.

Notation: F [¢(Y)|z] = E[g(Y)|X = z].
Preceding developments lead to the following theorem.
Theorem:

Elg(X,Y)|M] = /_O;/_Zg(x,y)f(x,ylM)dxdy

for an event M.

Special Case: Let M = {x < X <z + Az}. Then

Eg(X,Y)|lr < X <z + Ax]

00 z+Ax
= / / gle,y) flayle < X < o+ Az)dady.
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Recall,

fz,y)
Fx(l'g) — FX($1)7

fla,ylzy < X < ag) = 1 <z < x9.
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Let x1 =z, o = x + Ax. Then

f(x,y)
Fx(z + Az) — Fx(z)

flr,ylzy < X <z + Ax) =

Therefore,
Eg(X,Y)|lr < X <z + Ax]
e fla,y)
= dad
/ / FX(a+Ax) FX(a) y
:v—l—Aa:
_/ / O[ y O[ y) Fx(aJrAx) Fx (o) dOédy
0 1
— g(z, ) f(z, ) Ax—22—dy (as Az — 0).
| o) pdeAesdy )
Thus,

f(z,y)
fx(z)

ElgX VX =a] = [~ glay) =Ly

which becomes
Elg(X. V)X =al = [~ ga.)f(sla)dy
Note that the conditional mean of Y given X = x is itself a function of x:
EYIX =a]= [ yf(ylc)dy
Then E[Y|X] is a random variable and

BIE(YIX)] = [ BYX)fx(@)de

= [ [ vl ix(@)dyda.

But, 1)
~ Jlzy

SO

BIEYIX) = [y [ f@ydedy= [ yfey)dy = EY).
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Similarly,
EE (9(X,Y)[X)] = Eg(X,Y)].

11.5 Mean Square Estimation

Recall that the value of b that minimizes F [(X — b)?] is b = E(X) (see class
notes section 9.4). So if we wish to estimate the value of a random variable
Y using only a constant, ¢, then the mean square error (MSE)

e= B[y =] = [ (y-h(w)y

— 00

is minimized if we choose

c=E(Y) = [ yfr(y)ay.

With ¢ = E(Y), our cost function is E {(Y — E(Y))Q} which is the variance
(so we are minimizing the variance in our error).

Nonlinear MS Estimation:

Now consider a possibly nonlinear estimate for Y. Let

e=E[(Y — (X)) = [ (= c@)?F(a,y)dudy

- /_O:o /_O:O(?J — o(x)) f(ylz) fx (z)dady
= [ ix@) [y = ) (yla)dyda.
Now z is a constant in the integral
[ =@ sty

which implies ¢(x) is a constant in the integral as well. Since ¢(z) is a constant
we can use our prior result to conclude

cla) = B(Y|X =) = [ yf(yle)dy
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minimizes this integral for any x. Thus, E(Y|X = z) is the best MSE pre-
dictor of Y given X = .

Linear MS Estimation:

Sometimes we are willing to not necessarily have the best minimum mean
square estimate (or predictor) but instead a predictor that is easier to calcu-
late.

Theorem: Suppose that F(X?) and E(Y?) are finite and X and Y are
not constant. Then the best (in the MS sense) zero intercept linear predictor

~

of Y (Y = aoX) is obtained by taking

E(XY)
E(X?)

ag =

~

while the best linear predictor of Y (Y = a1 X + by) is

_ Cou(X,Y) B
ay; = T(X)’ by =EY)—-aEX).
Proof:
E[(Y = aX)?| = E(Y?) = 20E(XY) + o’ E(X?)
_ by EXY)) 2 [BXY)P
- 50 o= T | + [P0 -
Using a we have no control over
-5
while
B(X?) l& - E(XY)r
E(X?)

is minimized by taking a = ag. This proves the first part.

Now
E[(Y —aX —b)?| = E|(Y - aX)?| = 26E(Y — aX) + b



= Var(Y —aX) + [E(Y — aX)]? = 206E(Y — aX) + b
= Var(Y —aX) + [E(Y))] = 2¢E(X)E(Y) + d® [E(X)]
—2bE(Y) + 2abE(X) + b*
= Var(Y —aX)+ [E(Y) — aE(X) — b*.
Now given any value of a, [F(Y) — aE(X) — b]* is minimized by taking b =
E(Y)—aFE(X) = b;. Using this value of b we seek to minimize
E[(Y —aX =b?| = E|(Y —aX — (E(Y) - aE(X)))?]

=E[(Y = E(Y) - a(X — E(X)))’].
Let Yo = Y—E(Y), Xy = X—FE(X). Then we want to minimize [(Yy — aX;)?.

From first part of theorem we know

L BLXYo) _ BI(X = BO)Y = BV))] _ Cov(X.Y) _ -

E(X3) E[(X - E(X))?] Var(X)

Thus, b = by = E(Y) — a1 E(X) and Y = a; X + by is the best linear mean
square error predictor or estimator of Y.

Example: Suppose Z; is bernoulli with F(Z;) = p and Var(Z;) = pq where
g =1—p. Also, let Zy be bernoulli with E(Z3) = p and Var(Zy) = pq.
Assume Z; is independent of Z,. Let X = Z; and let Y = Z;Z5. Then

a. E(Y|X =) = E(Z1Z5|Z, = x] = E(xZ5) = pz.
b. E[E(Y|X)] = E[pX] =p* = E(Y).
c. Var[E(Y|X)] = Var(pX) = p*Var(X) = pq.

d. Var(Y|X = z) = Var(Z125|Z, = x) = Var(xZy) = z%pq.

e. EVar(Y|X)] = E(X?pq) = pgE(X?) = pgE(Z}) = pq[Var(Z,) + [E(Z))]]

pq(pg + p*) = p°q(q + p) = p*q.

f. Best MSE predictor of Y is E(Y|X) = pX =best MSE predictor of Y’
given X = x is px.



g. Best linear MSE predictor of Y is Y = a1 X + by where

~ Cou(X,Y) B
a; = W, b1 = E(Y) - alE(X)
Now
_E(XY) - E(XOE(Y) _ BE(Z%) - E(Z)E(%:%)

Var(X) Var(Zy)

E(Z)E(Zs) — E(Z1)E(Z1)E(Z,)
Var(Zy)

Wy +pp—p" _patv—v _

pq q
So bl == E(leg) —AalE(Zl) == E(Zl)E(ZQ) — alE(Zl) = p2 — aip =
p? —p> =0. Thus, Y = pX.

Therefore the best MSE predictor of Y given X is also the best linear MSE
predictor in this case (as expected since the best MSE predictor was itself
linear).

Orthogonality Principle

Counsider

e=E|(Y - (aX +1))]

where aX + b is a linear estimate of Y given the observed data X. This is
minimal where

Oe Oe

0 0 and % 0.
Thus 9
a_z = E[2(Y — (aX +0))] =0= E(Y) = aB(X) +b.
Also
& _ BR(Y — (aX +5)(-X)] =0 E[[Y — (aX +B)X] =0

This implies the estimation error (Y — (aX + b)) is orthogonal to the data.
This is called the orthogonality principle.



Special case: If b = 0 we have e = F[(Y —aX)?] and E[(Y —aX)X] =0
by the orthogonality principle, Thus,

E(XY)

E(XY)—-aE(X?*) =0 e el

(XY) ~aB(X*) =0 = a = T

which is the same as we got for the best zero intercept linear predictor of Y
given X.



