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10.2 Independence

Definition: Let (X,Y) be a two-dimensional discrete random variable. We
say X and Y are independent if py, = pipr, where py = P(X = z;,Y =
) P(Y = yx) Vi, k.

Definition: Let (X,Y’) be a two-dimensional continuous random variable.
We say X and Y are independent if f(x,y) = fx(x)fy(y), or equivalently
F(z,y) = Fx(z)Fy(y), or equivalently P(X € Sx,Y € Sy) = P(X €
Sx)P(Y € Sy), where Sx and Sy are arbitrary measurable sets on the x-
axis and y-axis, respectively.

Example: From before

2, Y

ﬂ%@z{

0, elsewhere.
We found 5
22+ 2 0<z<1,
0, elsewhere.
Ly
5T = 0 S x S 17
fr(y) = 36

0, elsewhere.
Here f(z,y) # fx(z)fy(y) so X and Y are not independent.
Theorem: Let (X,Y) be a two-dimensional random variable. Let A and
B be events whose occurrence (or nonoccurrence) depends only on X and Y,

respectively. (Thatis, A C Rx, B C Ry.) Then, if X and Y are independent
random variables, P(AN B) = P(A)P(B).

Proof: (continuous case only).

P(ANB) ://f(x,y)dxdy

ANB



10.3 One Function of Two Random Variables

Given random variables X and Y and a function g(z, y), we form the random
variable

Z =g(X,)Y).
We find the distribution function as
Fgz(2) = P(Z < 2) = P(9(X,)Y) < 2) = P((z,y) € D)
where, D, is the region in the zy-plane consisting of the set

{(z,y) :x € Rx, y € Ry, g(x,y) < z}.

So,
Fa)= [ | e y)dady

where, f(x,y) is the joint density of X and Y.

Example: Given X and Y with joint pdf

—(z+y)
_Je , 20, y=>0,
fley) = { 0, elsewhere.
a. Are X and Y independent?
b. Find the distribution function and the pdf of Z = min {X,Y}.

Solution:

a. X and Y independent if and only if f(z,y) = fx(z)fy(y). Now

fx(z) = /Oo fla,y)dy = /OOO e t)dy

—00

or

e x>0,
fx(w) = { 0, elsewhere.
Similarly,
_) e y=20,
Frly) = { 0, elsewhere.
So f(z,y) = e ) = e7%eY = fx(x)fy(y) = X and Y are indepen-
dent.



b.

Z =min{X,Y}. Now
Fz(2) =P(Z <z)=P(min{X,Y} <2z2)

=1—-Pmin{X,Y} > z)
=1-PX>2zY>z)=1-P(X >2)PY > 2).

Now
Fx(x) = /_xoo fx(u)du = /Ox e “du = (1 - e"”) U(x).
Similarly,
Fy(y) = (1—e) U(y).
So
Fz(z) = 1= (1= Fx(2)(1 = Fy(2)) = (1 - e %) U(2)

1—e2, 2>0,
Fz(2) = { 0, elsewhere.

Thus, fz(z) = LFy(z) or

2e7%% 2 >0,
J2(2) = { 0, elsewhere.

Example: Suppose that X and Y are independent random variables each
uniformly distributed over [0,1]. Let Z = X + Y. Find the pdf of Z, f;(2),
and the distribution function, Fyz(z).

Solution: The joint pdf is

flx,y) = fx(x)fy(y),

where
1, 0<z<1,
fx(@) = { 0, elsewhere
and
1, 0<y <1,
Frly) = { 0, elsewhere.



Now,
Fz(2)=P(Z<z2)=P(X+Y <2)= /f(x,y)dxdy.

(z.y):x+y<z

There are four cases to consider:
1. 2<0. Set e +y=2=y=—x+ 2z Here Fz(z) =0.

2. 0<zz< 1.

z r—x+tz 9
Fz(2) :/0 /0 dydx = 2% /2.

3. 1< 2z2<2.
z—1 1 1 —x+z
FZ(z):/ / dydx+/ / dydr =2z — 2*/2 — 1.
o Jo 2—1Jo

4. z> 2. Here Fy(z) = 1.

So
0, z <0,

Fy(2) 22/2, 0<z<1,

2] =

“ 92— 22/2-1, 1<2<2,
1, z > 2.

Definition: Two random variables X and Y are said to be jointly normal if

flw,y) = 27T0X0'y1\/m
-1 (o), o)y —py) | (Y= ay)?
2(1— 12) < 2 ’ B )] '

Here |r| < 1 where r is called the correlation coefficient (more about this
later). Integration shows

- exp

and




If r =0 then X and Y are said to be uncorrelated and in the normal case
they are also independent.

Example: Let

2mo?
Here f(z,y) = fx(x)fy(y) where

Fx(@) = —— - exp (——)

2mo 202

Fr(y) = —— - exp <_ yQ).

2ro ﬁ

2 2
floy) = - -exp<—‘” “f).

and

Find fz(z) where Z = v X% 4+ Y2
Solution: Here Z? = X? + Y2 Let
xr=rcosf, y=rsinb, drdy = rdrdf.

Then,

1 x2+y2
Fz(2) ://D ny(x,y)dxdy:/ e <_ =

- / /D  Jno(r 6)drdo

where

DZ:{(x,y):\/xQ—l—y?Sz}, D:={r0):0<r<z0<0<2n}.

So

1 z 2w 9 109
Fy(2) = /0 /0 re”" 27 dfdr

2o

=1 —e’ZQ/QUQ, z > 0.



Thus,

0, elsewhere.

This is a Rayleigh density.

10.4 Two Functions of Two Random Variables

Here we have two random variables X and Y and form
Z=g(X,)Y), W=h(X,Y).
Now
Fow(z,w)=P(Z < z,W <w)=P(g(X,Y) <z, h(X,Y) <w)
=P((X,Y) € D,,)
where, D.,,, is the region in the zy-plane consisting of the set
{(z,y) :z € Rx, y € Ry, g(x,y) <z, h(z,y) <w}.

So,
Fow(z,w) ://D fxv(x,y)dxdy.

Theorem: Let X and Y be two random variables and let Z = g(X,Y’) and
W = h(X,Y). Let g(x,y) = z and h(z,y) = w have solutions (z,,y,),n =
1,2,.... Then

_fXY(xlayl) Ixv (w2,12)
T 0) = T3yl s

where J is the Jacobian defined as

0z Oz ox oz |—1
oz dy 9z  Ow
J €T ey =
(z,9) ow  Jw oy Oy
oz oy 0z ow

Proof: See posted handout.



Example: Suppose we throw a dart at a unit circle. Let (z,y) denote the
coordinates where it lands. The area of the unit circle is 712 = 7 so assume

1/m, (z,y) inside circle,

fxv(z,y) = {

0, elsewhere.
Define R = v X2 + Y2 Find fz(r).
Solution: Let ® = tan™'(Y/X). Then
R=g¢g(X,Y), where g(z,y) = \/m

and

® = h(X,Y), where h(z,y) = tan™*(y/x).

We solve for z,y as
T =7rcos¢, y=rsine.

Thus,
Ox |—1 . -1
r.6) Zf g—z cos ¢ —rsmd)‘ 1
J 7’, = = = —
9y Oy i T
5 59 sin ¢ 7 COS ¢
So,

fro(r,®) = fxy(rcos¢,rsing)r =r/m, 0<r<1, 0< ¢ <2m

and
fulr) = /02” Fro(r, &) = /02” %dqﬁ —or 0<r<l1.

Theorem: Let (X,Y") be a continuous two-dimensional random variable and
assume X and Y are independent. Let W = XY. Then

1
—|dz.
z

fwtw) = [~ fx@) v (w/?)

Proof: w = zy. Let z = 2. Thus, x = z and y = w/z.

-1

or @
P T L N
ST w| T —w/z* 1)z -
0z ow



So,

fowlew) = fxv(zwf2) [7] = fx@) fr e/ |2

Thus,

fw(w) :/O:O fx(2)fy(w/z) % dz.

Theorem: Let (X,Y') be a continuous two-dimensional random variable and
assume X and Y are independent. Let Z = X/Y. Then

f(2) = [ fctws)fr(w) el dw.

Proof: z = z/y. Let w =y. Thus, z = wz and y = w.

9z 9z |—1

. " Wz 1
J(z,w) = Zy Zy = =
El 0 1
So,
fzw(z,w) = fx(wz) fy(w) [w].
Thus,

fz(2) = /0:0 Ix(wz) fy (w) |w| dw.

Theorem: Let (X,Y) be a continuous two-dimensional random variable.
Let Z =X +Y. Then

f2(2) = [ fev(w,z = w)dw.

Proof: z =z +y. Let w=x. Thus, y =2 —w and z = w.

ox oz |—1

= - 0 1
‘](Zaw) = ‘ gz Zw = = —1.
aoul Thoa
So,
fow(z,w) = fxy(w, z — w).
Thus,

f2(2) = [ fev(w,z = w)dw.



Special Case: If X and Y are independent then

fz(2) = /O:o fx(w) fy(z —w)dw = fx * fy.

We can deduce this last result a more direct way as follows: Recall X and Y
are independent and Z = X + Y.

Fi(2) = P(Z<2) = P(X+Y)<2) = [ [ fx(@)fr(y)drdy

where
D,={(z,y):x+y<z}.
Thus o an
Fo2) = [ [ px@) v (y)dyda
— [ i@ | [ rly)dy| da.
Then .
fz(z) = C%FZ(Z) = /700 Ifx(x)fy(z —x)dz.

Example: Suppose T} and 75 represent the life lengths of electronic compo-
nents with pdf
ane” Mty >0,

le(tl) = {

0, elsewhere

and
Oég€_a2t2 tg Z O,

J

fr,(ta) = {

0, elsewhere.

Suppose component 2 turns on when component 1 ceases operation. Find
the pdf of the total life length T' =T} + T5.

Solution:

i. Assume oy # as. Then

fr(t) = /O:O fry(t1) fr, (t — t1)dty, £ > 0.

10



Now t; > 0 (due to fr,) and (¢t —t;) > 0 (due to fr,). Thus 0 < t; <.

So,
t
fr(t) = / are” i ape 271 gt
0
or o
i (6—a1t1 _ e—agtz) , t Z 07
fT(t) = 0y — g
0, elsewhere.

ii. Assume o7 = a9 = . Then

t
fr(t) :/0 e et gy,
or

fr(t) =

aAtem™ t>0,
0, elsewhere.

Linear Transformations

Let Z = aX +bY, W = ¢X + dY for constants a,b,c,d. Then the val-
ues these random variables can take on can be written as

HE M

If we let M be the 2 x 2 matrix above then if M~ exists, we get

-2l

Then x = Az + Bw, y = Cz + Dw for some constants A, B,C, D. Now

9z 2= a b
oz 0
J(x,y):\ ‘y‘: = ad — be.

dw  ow| |,

ox Jy

So,
1
fzw(z, U}) = mfxy (AZ + Bw, Cz + Dw) .

11



Theorem: Let X and Y be two independent random variables each of which
may assume only nonnegative integral values. Let

pr=P(X =k),k=0,1,2,...

and
¢ =PY=r),r=012,....

Let W =X +Y and let w; = P(W =14). Then
wi= 3 pegigs i=0,1,2...
k=0
Proof: w; = P(w =1) so
w;=P(X=0,Y=ior X=1Y=i—1lor --- or X=14Y =0)

:ZP(X:k,Y:i—k‘)zzi:P(X:k)P(Y:i—k)zzi:pkqi_k.

k=0
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