
Application Layer 2-1

Chapter 2
Application Layer

Computer 
Networking: A Top 
Down Approach 
6th edition 
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We re making these slides freely available to all (faculty, students, readers). 

They re in PowerPoint form so you see the animations; and can add, modify, 

and delete slides  (including this one) and slide content to suit your needs. 

They obviously represent a lot of work on our part. In return for use, we only 

ask the following:
× If you use these slides (e.g., in a class) that you mention their source 

(after all, we d like people to use our book!)

× If you post any slides on a www site, that you note that they are adapted 

from (or perhaps identical to) our slides, and note our copyright of this 

material.

Thanks and enjoy!  JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved



Application Layer2-2

Chapter 2: outline

2.1 principles of network 
applications

2.2 Web and HTTP

2.3 FTP 

2.4 electronic mail
ÁSMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming 
with UDP and TCP



Application Layer2-3

Chapter 2: application layer

our goals:

× conceptual, 
implementation aspects 
of network application 
protocols

Átransport-layer 
service models

Áclient-server 
paradigm

Ápeer-to-peer 
paradigm

× learn about protocols by 
examining popular 
application-level 
protocols
ÁHTTP

ÁFTP

ÁSMTP / POP3 / IMAP

ÁDNS

× creating network 
applications

Ásocket API



Application Layer2-4

Some network apps

× e-mail

× web

× text messaging

× remote login

× P2P file sharing

× multi-user network games

× streaming stored video 
(YouTube, Hulu, Netflix) 

× voice over IP (e.g., Skype)

× real-time video 
conferencing

× social networking

× search

× é

× é



Application Layer2-5

Creating a network app

write programs that:

× run on (different) end systems

× communicate over network

× e.g., web server software 
communicates with browser 
software

no need to write software for 
network-core devices

× network-core devices do not 
run user applications 

× applications on end systems  
allows for rapid app 
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical



Application Layer2-6

Application architectures

possible structure of applications:

× client-server

× peer-to-peer (P2P)



Application Layer2-7

Client-server architecture

server: 
× always-on host

× permanent IP address

× data centers for scaling

clients:
× communicate with server

× may be intermittently 
connected

× may have dynamic IP 
addresses

× do not communicate directly 
with each other

client/server



Application Layer2-8

P2P architecture

× noalways-on server

× arbitrary end systems 
directly communicate

× peers request service from 
other peers, provide service 
in return to other peers

Áself scalabilityðnew 
peers bring new service 
capacity, as well as new 
service demands

× peers are intermittently 
connected and change IP 
addresses

Ácomplex management

peer-peer



Application Layer2-9

Processes communicating

process:program running 
within a host

× within same host, two 
processes communicate 
using  inter-process 
communication(defined by 
OS)

× processes in different hosts 
communicate by exchanging 
messages

client process:process that 
initiates communication

server process:process that 
waits to be contacted

× aside: applications with P2P 

architectures have client 

processes & server 

processes

clients, servers



Application Layer2-10

Sockets

× process sends/receives messages to/from its socket

× socket analogous to door

Ásending process shoves message out door

Ásending process relies on transport infrastructure on 
other side of door to deliver message to socket at 
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket



Application Layer2-11

Addressing processes

× to receive messages, 
process  must have identifier

× host device has unique 32-
bit IP address

× Q:does  IP address of host 
on which process runs 
suffice for identifying the 
process?

× identifierincludes both IP 
addressand port numbers
associated with process on 
host.

× example port numbers:
ÁHTTP server: 80

Ámail server: 25

× to send HTTP message to 
gaia.cs.umass.edu web 
server:
Á IP address:128.119.245.12

Áport number:80

× more shortlyé

ÁA:no, manyprocesses 
can be running on same 
host



Application Layer2-12

App-layer protocol defines

× types of messages 
exchanged,

Áe.g., request, response 

× message syntax:

Áwhat fields in messages 
& how fields are 
delineated

× message semantics

Ámeaning of information 
in fields

× rulesfor when and how 
processes send & respond 
to messages

open protocols:

× defined in RFCs

× allows for interoperability

× e.g., HTTP, SMTP

proprietary protocols:

× e.g., Skype



Application Layer2-13

What transport service does an app need?

data integrity

× some apps (e.g., file transfer, 
web transactions) require 

100% reliable data transfer

× other apps (e.g., audio) can 
tolerate some loss

timing

× some apps (e.g., Internet 
telephony, interactive 
games) require low delay 
to be effective

throughput

× some apps (e.g., 
multimedia) require 
minimum amount of 
throughput to be 
effective

× other apps (elastic apps) 
make use of whatever 
throughput they get 

security

× encryption, data integrity, 

é



Application Layer2-14

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above 

few kbps up

elastic

time sensitive

no

no

no

yes, 100 s 

msec

yes, few secs

yes, 100 s 

msec

yes and no



Application Layer2-15

Internet transport protocols services

TCP service:
× reliable transportbetween 

sending and receiving 
process

× flow control:sender won t 
overwhelm receiver 

× congestion control:throttle 
sender when network 
overloaded

× does not provide:timing, 
minimum throughput 
guarantee, security

× connection-oriented:setup 
required between client and 
server processes

UDP service:
× unreliable data transfer

between sending and 
receiving process

× does not provide:
reliability, flow control, 
congestion control, 
timing, throughput 
guarantee, security, 
orconnection setup, 

Q: why bother?  Why is 
there a UDP?



Application Layer2-16

Internet apps:  application, transport protocols

application

e-mail

remote terminal access

Web 

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube), 

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP



Securing TCP

TCP & UDP 

× no encryption

× cleartextpasswdssent 
into socket traverse 
Internet  in cleartext

SSL

× provides encrypted 
TCP connection

× data integrity

× end-point 
authentication

SSL is at app layer

× Apps use SSL libraries, 
which talk to TCP

SSL socket API

× cleartext passwds sent 
into socket traverse 
Internet  encrypted 

× See Chapter 7

Application Layer2-17



Application Layer2-18

Chapter 2: outline

2.1 principles of network 
applications
Áapp architectures

Áapp requirements

2.2 Web and HTTP

2.3 FTP 

2.4 electronic mail
ÁSMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming 
with UDP and TCP



Application Layer2-19

Web and HTTP

First, a reviewé
× web pageconsists of objects

× object can be HTML file, JPEG image, Java applet, 
audio file,é

× web page consists of base HTML-filewhich 
includes several referenced objects

× each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name



Application Layer2-20

HTTP overview

HTTP: hypertext 
transfer protocol

× Web s application layer 
protocol

× client/server model
Áclient: browser that 

requests, receives, 
(using HTTP protocol) 
and displays Web 
objects 
Áserver:Web server 

sends (using HTTP 
protocol) objects in 
response to requests

PC running

Firefox browser

server 

running

Apache Web

server

iphone running

Safari browser



Application Layer2-21

HTTP overview (continued)

uses TCP:
× client initiates TCP 

connection (creates 
socket) to server,  port 80

× server accepts TCP 
connection from client

× HTTP messages 
(application-layer protocol 
messages) exchanged 
between browser (HTTP 
client) and Web server 
(HTTP server)

× TCP connection closed

HTTP is stateless
× server maintains no 

information about 
past client requests

protocols that maintain 
state are complex!

× past history (state) must be 
maintained

× if server/client crashes, their 
views of state may be 
inconsistent, must be 
reconciled

aside



Application Layer2-22

HTTP connections

non-persistent HTTP

× at most one object 
sent over TCP 
connection

Áconnection then 
closed

× downloading multiple 
objects required 
multiple connections

persistent HTTP

× multiple objects can 
be sent over single 
TCP connection 
between client, server



Application Layer2-23

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at 
www.someSchool.edu on port 
80

2.HTTP client sends HTTP request 

message(containing URL) into 

TCP connection socket. 

Message indicates that client 

wants object 

someDepartment/home.index

1b.HTTP server at host 

www.someSchool.edu waiting 

for TCP connection at port 80.  

accepts connection, notifying 

client

3.HTTP server receives request 

message, forms response 

messagecontaining requested 

object, and sends message into 

its socket

time

(contains text, 

references to 10 

jpeg images)

www.someSchool.edu/someDepartment/home.index



Application Layer2-24

Non-persistent HTTP (cont.)

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html file, 
finds 10 referenced jpeg  objects

6.Steps 1-5 repeated for each of 

10 jpeg objects

4.HTTP server closes TCP 

connection. 

time



Application Layer2-25

Non-persistent HTTP: response time

RTT (definition):time for a 
small packet to travel from 
client to server and back

HTTP response time:

× one RTT to initiate TCP 
connection

× one RTT for HTTP request 
and first few bytes of HTTP 
response to return

× file transmission time

× non-persistent HTTP 
response time =   

2RTT+ file transmission  
time

time to 
transmit 
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time



Application Layer2-26

Persistent HTTP

non-persistent HTTP issues:
× requires 2 RTTs per object

× OS overhead for eachTCP 
connection

× browsers often open 
parallel TCP connections 
to fetch referenced objects

persistent  HTTP:
× server leaves connection 

open after sending 
response

× subsequent HTTP 
messages  between same 
client/server sent over 
open connection

× client sends requests as 
soon as it encounters a 
referenced object

× as little as one RTT for all 
the referenced objects



Application Layer2-27

HTTP request message

× two types of HTTP messages: request, response

× HTTP request message:
ÁASCII (human-readable format)

request line

(GET, POST, 

HEAD commands)

header

lines

carriage return, 

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1 \ r \ n

Host: www - net.cs.umass.edu \ r \ n

User - Agent: Firefox/3.6.10 \ r \ n

Accept: text/html,application/xhtml+xml \ r \ n

Accept - Language: en - us,en;q=0.5 \ r \ n

Accept - Encoding: gzip,deflate \ r \ n

Accept - Charset: ISO - 8859 - 1,utf - 8;q=0.7 \ r \ n

Keep- Alive: 115 \ r \ n

Connection: keep - alive \ r \ n

\ r \ n

carriage return character

line-feed character



Application Layer2-28

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~



Application Layer2-29

Uploading form input

POST method:
× web page often includes 

form input

× input is uploaded to 
server in entity body

URL method:
× uses GET method

× input is uploaded in URL 
field of request line:

www.somesite.com/animalsearch?monkeys&banana



Application Layer2-30

Method types

HTTP/1.0:
× GET

× POST

× HEAD

Áasks server to leave 
requested object out 
of response

HTTP/1.1:
× GET, POST, HEAD

× PUT

Áuploads file in entity 
body to path specified 
in URL field

× DELETE

Ádeletes file specified in 
the URL field



Application Layer2-31

HTTP response message

status line

(protocol

status code

status phrase)

header

lines

data, e.g., 

requested

HTML file

HTTP/1.1 200 OK \ r \ n

Date: Sun, 26 Sep 2010 20:09:20 GMT \ r \ n

Server: Apache/2.0.52 (CentOS) \ r \ n

Last - Modified: Tue, 30 Oct 2007 17:00:02 

GMT\ r \ n

ETag: "17dc6 - a5c - bf716880" \ r \ n

Accept - Ranges: bytes \ r \ n

Content - Length: 2652 \ r \ n

Keep- Alive: timeout=10, max=100 \ r \ n

Connection: Keep - Alive \ r \ n

Content - Type: text/html; charset=ISO - 8859 -

1\ r \ n

\ r \ n

data data data data data ... 



Application Layer2-32

HTTP response status codes

200 OK

Á request succeeded, requested object later in this msg

301 Moved Permanently

Á requested object moved, new location specified later in this msg 
(Location:)

400 Bad Request

Á request msg not understood by server

404 Not Found

Á requested document not found on this server

505 HTTP Version Not Supported

× status code appears in 1st line in server-to-
client response message.

× some sample codes:



Application Layer2-33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent 

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete) 

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)



Application Layer2-34

User-server state: cookies

many Web sites use cookies

four components:

1) cookie header line of 
HTTP response
message

2) cookie header line in 
next HTTP request
message

3) cookie file kept on 
user s host, managed 
by user s browser

4) back-end database at 
Web site

example:

× Susan always access Internet 
from PC

× visits specific e-commerce 
site for first time

× when initial HTTP requests 
arrives at site, site creates: 

Áunique ID

Áentry in backend 
database for ID



Application Layer2-35

Cookies: keeping state (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
entry

usual http response 
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database



Application Layer2-36

Cookies (continued)

what cookies can be used 
for:

× authorization
× shopping carts
× recommendations
× user session state (Web 

e-mail)

cookies and privacy:

× cookies permit sites to 
learn a lot about you

× you may supply name and 
e-mail to sites

aside

how to keep state :

× protocol endpoints: maintain state at 
sender/receiver over multiple 
transactions

× cookies: http messages carry state



Application Layer2-37

Web caches (proxy server)

× user sets browser: Web 
accesses via  cache

× browser sends all HTTP 
requests to cache

Áobject in cache: cache 
returns object 

Áelse cache requests 
object from origin 
server, then returns 
object to client

goal:satisfy client request without involving origin server

client

proxy

server

client origin 

server

origin 

server



Application Layer2-38

More about Web caching

× cache acts as both 
client and server
Áserver for original 

requesting client

Áclient to origin server

× typically cache is 
installed by ISP 
(university, company, 
residential ISP)

why Web caching?

× reduce response time 
for client request

× reduce traffic on an 
institution s access link

× Internet dense with 
caches: enables poor
content providers to 
effectively deliver 
content (so too does 
P2P file sharing)



Application Layer2-39

Caching example: 

origin

servers
public

Internet

institutional

network
1 Gbps LAN

1.54 Mbps 

access link

assumptions:
× avg object size: 100K bits

× avg request rate from browsers to 
origin servers:15/sec

× avg data rate to browsers: 1.50 Mbps

× RTT from institutional router to any 
origin server: 2 sec

× access link rate: 1.54 Mbps

consequences:
× LAN utilization: 15%

× access link utilization = 99%

× total delay   = Internet delay + access 
delay + LAN delay

=  2 sec + minutes + usecs

problem!



Application Layer2-40

assumptions:
× avg object size: 100K bits

× avg request rate from browsers to 
origin servers:15/sec

× avg data rate to browsers: 1.50 Mbps

× RTT from institutional router to any 
origin server: 2 sec

× access link rate: 1.54 Mbps

consequences:
× LAN utilization: 15%

× access link utilization = 99%

× total delay   = Internet delay + access 
delay + LAN delay

=  2 sec + minutes + usecs

Caching example: fatter access link

origin

servers

1.54 Mbps 

access link
154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

Internet

institutional

network
1 Gbps LAN



institutional

network
1 Gbps LAN

Application Layer2-41

Caching example: install local cache

origin

servers

1.54 Mbps 

access link

local web 
cache

assumptions:
× avg object size: 100K bits

× avg request rate from browsers to 
origin servers:15/sec

× avg data rate to browsers: 1.50 Mbps

× RTT from institutional router to any 
origin server: 2 sec

× access link rate: 1.54 Mbps

consequences:
× LAN utilization: 15%

× access link utilization = 100%

× total delay   = Internet delay + access 
delay + LAN delay

=  2 sec + minutes + usecs

?
?

How to compute link 
utilization, delay?

Cost: web cache (cheap!)

public

Internet


