
Home Work 5 Solution

EE 450

Dr. Walker

P3.16)

This way upon receiving each ACK the sender will send out the next packet and

the sender will send each packet per receiver request which is expressed through the

ACKs.

There will be one main problem. This way sender cannot use the existence of an

ACK as a confirmation of the received packet and some other approach need to be

considered to track lost data packets.

P3.39)

If the arrival rate goes beyond R/2 then the number of packets queued will go

beyond the capacity and the loss rate will increase. The dropped packets will be queued

for retransmission which in turn will use some of the transmission line capacity in future

which again decrease the throughput. When the arrival rate equals R/2, 1 out of every

three packets that leaves the queue is a retransmission. So pushing more through the

transmission line (going beyond R/2) will not help with having a throughput more than

𝜆𝑜𝑢𝑡.

The same reasoning holds for the case where we have lost packets. If the loss rate

be half and the maximum rate be R/2 then 𝜆𝑜𝑢𝑡 will not go beyond R/4.

P3.45)

a) Loss rate by definition the ratio of the packets lost over the total number of packets

sent. According to the problem in each cycle only one packet is lost so calculating the

total number of packets leave the sender in each cycle will provide us with enough

information to calculate the loss rate.

In the beginning of the Cycle the window size is W/2 uppon transmission of each

window one packet will be added to the window size, till at window size W a packet

will be lost and a new cycle begins by reducing the window size to W/2.

So the total number of sent packets in a cycle is:














2/

0

)
2

(1
22

W

n

n
W

W
WW
















2/

02
1

2

W

n

n
WW

2

)12/(2/

2
1

2













WWWW

4824

22 WWWW


WW
4

3

8

3 2 

And hence the loss rate is:

WW

L

4

3

8

3

1

2 



b)

 For large enough W :

 WW
4

3

8

3 2 

And thus:

 23/8 WL  or
L

W
3

8


Using the text we will have following statement for the throughput:

 E(throughput)
RTT

MSS

L


3

8

4

3

LRTT

MSS






22.1

P3.46)

a) Let W denote the max window size measured in segments. Then, W*MSS/RTT =

10Mbps, as packets will be dropped if the maximum sending rate exceeds link capacity.

Thus, we have W*1500*8/0.15=10*10^6, then W is about 125 segments.

b) As congestion window size varies from W/2 to W, then the average window size is

0.75W=94 (ceiling of 93.75) segments. Average throughput is 94*1500*8/0.15

=7.52Mbps.

c) 94/2 *0.15 = 7.05 seconds, as the number of RTTs (that this TCP connections needs in

order to increase its window size from W/2 to W) is given by W/2. Recall the window

size increases by one in each RTT.

P3.47)

Let W denote max window size. Let S denote the buffer size. For simplicity,

suppose TCP sender sends data packets in a round by round fashion, with each round

corresponding to a RTT. If the window size reaches W, then a loss occurs. Then the sender

will cut its congestion window size by half, and waits for the ACKs for W/2 outstanding

packets before it starts sending data segments again. In order to make sure the link always

busying sending data, we need to let the link busy sending data in the period W/(2*C) (this

is the time interval where the sender is waiting for the ACKs for the W/2 outstanding

packets). Thus, S/C must be no less than W/(2*C), that is, S>=W/2.

Let Tp denote the one-way propagation delay between the sender and the receiver.

When the window size reaches the minimum W/2 and the buffer is empty, we need to make

sure the link is also busy sending data. Thus, we must have W/2/(2Tp)>=C, thus,

W/2>=C*2Tp. Thus:

 S>=C*2Tp.

P3.50)

a) The key difference between C1 and C2 is that C1’s RTT is only half of that of C2.

Thus C1 adjusts its window size after 50 msec, but C2 adjusts its window size after

100 msec. Assume that whenever a loss event happens, C1 receives it after 50msec

and C2 receives it after 100msec. We further have the following simplified model of

TCP. After each RTT, a connection determines if it should increase window size or

not. For C1, we compute the average total sending rate in the link in the previous 50

msec. If that rate exceeds the link capacity, then we assume that C1 detects loss and

reduces its window size. But for C2, we compute the average total sending rate in the

link in the previous 100msec. If that rate exceeds the link capacity, then we assume

that C2 detects loss and reduces its window size. Note that it is possible that the

average sending rate in last 50msec is higher than the link capacity, but the average

sending rate in last 100msec is smaller than or equal to the link capacity, then in this

case, we assume that C1 will experience loss event but C2 will not.

 The following table describes the evolution of window sizes and sending rates

based on the above assumptions.

 C1 C2

Time

(msec)

Window Size

(num. of segments

sent in next

50msec)

Average data sending

rate (segments per

second,

=Window/0.05)

Window

Size(num. of

segments sent

in next

100msec)

Average data sending rate

(segments per second,

=Window/0.1)

0 10 200 (in [0-50]msec] 10 100 (in [0-50]msec)

50 5

(decreases window

size as the avg.

total sending rate to

the link in last

50msec is 300=

200+100)

100 (in [50-100]msec] 100 (in [50-100]msec)

100 2

(decreases window

size as the avg.

total sending rate to

the link in last

50msec is 200=

100+100)

40 5

(decreases

window size as

the avg. total

sending rate to

the link in last

100msec is

250=

(200+100)/2 +

(100+100)/2)

50

150 1

(decreases window

size as the avg.

total sending rate to

the link in last

50msec is 90=

(40+50)

20 50

200 1

(no further

decrease, as

window size is

already 1)

20 2

(decreases

window size as

the avg. total

sending rate to

the link in last

100msec is 80=

20

(40+20)/2 +

(50+50)/2)

250 1

(no further

decrease, as

window size is

already 1)

20 20

300 1

(no further

decrease, as

window size is

already 1)

20 1

(decreases

window size as

the avg. total

sending rate to

the link in last

100msec is 40=

(20+20)/2 +

(20+20)/2)

10

350 2 40 10

400 1 20 1 10

450 2 40 10

500 1

(decreases window

size as the avg.

total sending rate to

the link in last

50msec is 50=

(40+10)

20 1

10

550 2 40 10

600 1 20 1 10

650 2 40 10

700 1 20 1 10

750 2 40 10

800 1 20 1 10

850 2 40 10

900 1 20 1 10

950 2 40 10

1000 1 20 1 10

 Based on the above table, we find that after 1000 msec, C1’s and C2’s window

sizes are 1 segment each.

b) No. In the long run, C1’s bandwidth share is roughly twice as that of C2’s, because

C1 has shorter RTT, only half of that of C2, so C1 can adjust its window size twice

as fast as C2. If we look at the above table, we can see a cycle every 200msec, e.g.

from 850msec to 1000msec, inclusive. Within a cycle, the sending rate of C1 is

(40+20+40+20) = 120, which is thrice as large as the sending of C2 given by

(10+10+10+10) = 40.

P3.51)

a) Similarly as in last problem, we can compute their window sizes over time in the

following table. Both C1 and C2 have the same window size 2 after 2200msec.

 C1 C2

Time

(msec)

Window Size

(num. of

segments sent in

next 100msec)

Data sending

speed (segments

per second,

=Window/0.1)

Window

Size(num. of

segments sent in

next 100msec)

Data sending speed (segments per

second, =Window/0.1)

0 15 150 (in [0-

100]msec]

10 100 (in [0-100]msec)

100 7 70 5 50

200 3 30 2 20

300 1 10 1 10

400 2 20 2 20

500 1 10 1 10

600 2 20 2 20

700 1 10 1 10

800 2 20 2 20

900 1 10 1 10

1000 2 20 2 20

1100 1 10 1 10

1200 2 20 2 20

1300 1 10 1 10

1400 2 20 2 20

1500 1 10 1 10

1600 2 20 2 20

1700 1 10 1 10

1800 2 20 2 20

1900 1 10 1 10

2000 2 20 2 20

2100 1 10 1 10

2200 2 20 2 20

b) Yes, this is due to the AIMD algorithm of TCP and that both connections have the

same RTT.

c) Yes, this can be seen clearly from the above table. Their max window size is 2.

d) No, this synchronization won’t help to improve link utilization, as these two

connections act as a single connection oscillating between min and max window

size. Thus, the link is not fully utilized (recall we assume this link has no buffer).

One possible way to break the synchronization is to add a finite buffer to the link

and randomly drop packets in the buffer before buffer overflow. This will cause

different connections cut their window sizes at different times. There are many

AQM (Active Queue Management) techniques to do that, such as RED (Random

Early Detect), PI (Proportional and Integral AQM), AVQ (Adaptive Virtual

Queue), and REM (Random Exponential Marking), etc.

