
EE 564
Homework 3 Solutions

Problem 1. In class we gave two different demodulators for BPSK signals.
Draw the circuits corresponding to these demodulators and show that they
are equivalent by writing down a mathematical description of the signal as
it pass thru the circuits.

Solution: See below for circuit. We find

r1a =
A

2
cos θ +

A

2
cos(4πfct + 2θ)

r1b =
AT

2
cos θ

where we assume an integer number of sinusoidal cycles per integration period
T . Also,

r2a =
A

2
cos θ +

A

2
cos(4πfct + 2θ)

r2b =
AT

2
cos θ

r3a =
A

2
cos(θ − π) +

A

2
cos(4πfct + θ + π)

r3b =
AT

2
cos(θ − π).

We see that if θ = 0 then r2b = r1b and if θ = π then r3b = −r1b so the two
circuits make equivalent decisions.

Problem 2. In the first BPSK demodulator that we showed in class we
had a single integrator in the circuit that integrated the received signal for
T seconds (the period). In the presence of additive Gaussian noise the in-
tegrated noise component may be regarded as a normal (Gaussian) random
variable with mean 0 and variance σ2. Write down the density functions for
the signal at the output of the integrator and draw them on a graph. Your
graph should have two densities, for each value of the phase (0 or π). You
may assume for your graph that the amplitude of the signal is A = 2 and
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σ2 = 1.

Solution: See below.

Problem 3. In class we let the signal s(t) be real-valued:

s(t) = a(t) cos[2πfct + θ(t)] (1)

a(t) = amplitude (or envelope) of s(t)

θ(t) = phase of s(t)

fc = carrier frequency of s(t)

If bandwidth is much smaller than fc, we have a bandpass system.

s(t) = a(t) cos(θ(t)) cos(2πfct)− a(t) sin(θ(t)) sin(2πfct)

= x(t) cos(2πfct)− y(t) sin(2πfct) (2)

x(t) = a(t) cos(θ(t)) −→ in phase component

y(t) = a(t) sin(θ(t)) −→ quadrature component

x(t) and y(t) are low-pass signals, since their frequency component is con-
centrated around f = 0.
Let

u(t) = a(t)eiθ(t)

= x(t) + iy(t)

Then,
s(t) = Re{u(t)ei2πfct} (3)

We derived that the energy in s(t) is

ξ =
∫

∞

−∞

s2(t)dt

=
∫

∞

−∞

{Re[u(t)ei2πfct]}2dt

=
1

2

∫
∞

−∞

|u(t)|2dt +
1

2

∫
∞

−∞

|u(t)|2 cos[4πfct + 2θ(t)]dt
︸ ︷︷ ︸

small compared to the 1st integral
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So,

ξ ≈
1

2

∫
∞

−∞

|u(t)|2dt

where, |u(t)| = a(t), the envelope.

Justify the last step we took where we ignored the second integral.
Hint: You may assume that u(t) is an energy signal and then show that the
second integral goes to 0 as fc → ∞.

Solution: Since u(t) is an energy signal it is finite almost everywhere and
since it is a signal it is bounded, say |u(t)| ≤ M , some finite M . Hence,

1

2

∫
∞

−∞

|u(t)|2 cos[4πfct + 2θ(t)]dt ≤
M2

2

∫
∞

−∞

cos[4πfct + 2θ(t)]dt

=
M2

2
lim

T→∞

∫ T

−T
cos[4πfct + 2θ(t)]dt

=
M2

2
lim

T→∞

1

4πfc

sin[4πfct + 2θ(t)]

∣
∣
∣
∣
∣

T

−T

≤
M2

4πfc

and this last expression clearly goes to zero as fc → ∞.
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HW3 Problem 1

Xr(t)=Acos(2pfct+q)

cos(2pfct)


T

dt
0

)(
If > 0 choose q=0
Else choose q=p

Decision Variable

X

X

r(t)=Acos(2pfct+q)

cos(2pfct+0)

cos(2pfct+p)


T

dt
0

)(


T

dt
0

)(
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