EE 564

Homework 3 Solutions

Problem 1. In class we gave two different demodulators for BPSK signals.
Draw the circuits corresponding to these demodulators and show that they
are equivalent by writing down a mathematical description of the signal as
it pass thru the circuits.

Solution: See below for circuit. We find
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where we assume an integer number of sinusoidal cycles per integration period
T. Also,
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We see that if 8 = 0 then rop = 11 and if 6 = 7 then r3, = —ryp so the two

circuits make equivalent decisions.

Problem 2. In the first BPSK demodulator that we showed in class we
had a single integrator in the circuit that integrated the received signal for
T seconds (the period). In the presence of additive Gaussian noise the in-
tegrated noise component may be regarded as a normal (Gaussian) random
variable with mean 0 and variance o2. Write down the density functions for
the signal at the output of the integrator and draw them on a graph. Your
graph should have two densities, for each value of the phase (0 or 7). You
may assume for your graph that the amplitude of the signal is A = 2 and
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o2 =1.
Solution: See below.

Problem 3. In class we let the signal s(¢) be real-valued:
s(t) = a(t) cos2m f.t + O(1)] (1)

a(t) = amplitude (or envelope) of s(t)
0(t) = phase of s(t)
fe = carrier frequency of s(t)

If bandwidth is much smaller than f., we have a bandpass system.
s(t) = a(t) cos(0(t)) cos(2m f.t) — a(t) sin(6(t)) sin(27 f.t)
= z(t) cos(2m fot) — y(t) sin(27 f..t) (2)

x(t) = a(t)cos(0(t)) — in phase component
y(t) = a(t)sin(0(t)) —  quadrature component

x(t) and y(t) are low-pass signals, since their frequency component is con-
centrated around f = 0.
Let

u(t) = a(t)e®®

= x(t) + iy(t)
Then, '
s(t) = Re{u(t)e™™ '} (3)

We derived that the energy in s(t) is
£ = / ” s (t)dt
= [ {Relu(t)e™ )t

2/ t)|?dt + 2/ 2 cos|dm fut + 20(t)]dt

small compared to the 1%¢ integral
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So,
1 poo 9
x5 [ P

where, |u(t)| = a(t), the envelope.

Justify the last step we took where we ignored the second integral.
Hint: You may assume that u(t) is an energy signal and then show that the
second integral goes to 0 as f. — oo.

Solution: Since u(t) is an energy signal it is finite almost everywhere and
since it is a signal it is bounded, say |u(t)| < M, some finite M. Hence,
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and this last expression clearly goes to zero as f, — oc.



r(t)=Acos(2nf t+0) —»®—»

cos(2nf t)

r(t)=Acos(2nf_t+0)
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cos(2nf t+m)
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Decision Variable
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Density Functions Using T=2
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