
Linear Block Codes

2

Digital Communication System

3

What is Coding?

• By coding we do NOT mean

– Source coding where the data is compressed in a lossless

coding scheme (to remove redundancy)

– Encryption where the data is mapped in a certain way in

order to disguise it from an unauthorized receiver

• By coding we do mean to add extra data to an information

stream so that if that if the resulting code word becomes

corrupted we can recover the original data with a reasonable

probability

4

Error Correction Capability

• Error correction capability of a code depends on the minimum

distance of the code

– Measures how close code words are to each other

– The distance measure is Hamming distance which is the

number of places where the vectors differ

– Example: 1 1 0 0 1 vs. 1 0 0 1 0 (Hamming distance 3)

– Minimum distance is the smallest of all distances

• For a linear code the minimum distance is simply the fewest

number of 1’s found in all the nonzero code vectors

• A code can correct t = (dmin – 1)/2 or fewer errors

5

Coding Concepts

• Channel encoder adds redundancy to data by mapping k

information bits to n code bits (codeword)

– resulting codewords do not look like each other

– Code rate R = k / n

– Input rate is rb => output rate is rc = rb / R bps

• An M-ary modulator maps L encoded bits to one of M=2L

waveforms

– Each waveform is of T sec duration

– Output symbol rate rs = 1 / T = rb / RL symbols per sec

– Modulation is typically phase or amplitude and phase

– Others are possible

Block Codes

7

Encoding Block Codes

• For k information bits we have 2k possible messages

– Code space consists of 2n places for encoder to map the

information bits

• An (n,k) linear code is a k-dim subspace of the n-tuple vector

space Vn

• Can generate the block code by k linearly independent binary n-

tuples g0, g1, …, gk-1

• Let the message be u = (u0, u1, …, uk-1)

• Then the codeword is

111100  kk guguguv 

8

Encoding Block Codes (cont.)

• Can write

v = u • G

where

– G is called the generator matrix of the code

9

Encoding Block Codes (cont.)

• Can write G in systematic form so that the information bits are

actually part of the codeword explicitly, i.e., the message is

mapped as

• In this case

where

),,,,,,,(),,,(110110110   kknk uuuvvvuuu 

10

Encoding Block Codes (cont.)

• Since v = u • G, if G is in systematic form we can write v = [a u]

where a = u • P which implies a + u • P = 0 which may be

written as

• Thus

where

– H is called the parity check matrix and specifies the code like

G does

  0
P

I
ua 










kn

11

Example 1

Example. Consider (7, 4) linear code with generator





















1000101

1100010

0110001

0001011

*
G

Replacing row 3 with row 3 + row 4 and then replacing row 2 with row 2 + row 3 we get

G in systematic form as





















1000101

0100111

0010110

0001011

G

12

Example 2

Example. Consider (7, 4) linear code with generator









































1000101

0100111

0010110

0001011

3

2

1

0

g

g

g

g

G

Let the message

)1011(u .

Compute v and the parity check matrix H and verify that vH
T

= 0.

13

Example 2 Solution

Example. Consider (7, 4) linear code with generator









































1000101

0100111

0010110

0001011

3

2

1

0

g

g

g

g

G

Let the message

)1011(u

then

uGv 

)1011000(

)1000101()0010110()0001011(





Note G is in systematic form:  4IPG  .

)(34 is knk P

.

14

Example 2 Solution (cont.)

 T
PIHH 3is matrix check parity The 



















1110100

0111010

1101001

H

nkn )(is H .

)1011(For u Observe .)1011000(got we v

    000

101

111

110

011

100

010

001

1011000 





























T
vH

15

Decoding Block Codes

• Hamming weight of codeword v is the total number of nonzero

components

• Hamming distance d(v,w) between two codewords is the

number of places in which v and w differ

• Minimum Hamming distance is the smallest Hamming distance

between all possible distinct pairs of codewords

16

Decoding Block Codes (cont.)

• In maximum likelihood decoding we want to choose the estimate

of the transmitted codeword as the vector v that maximizes the

conditional density p(r|v) where r is the received vector

– For a binary symmetric channel with hard decisions at the

demodulator and transition probability p we have

– Now p(r|v) > p(r|w) iff d(r,v) < d(r,w) so the best thing we

can do is find the codeword vector v that minimizes d(r,v)

17

Decoding Block Codes (cont.)

• For a Gaussian channel using soft decisions at the demodulator

we have

ri = xi + ni

– where ni is a Gaussian sample of mean 0 and variance s2

and xi is +1 or –1 and represents the transmitted data

• In this case

• Which may be written as

18

Block Codes (cont.)

• This last function is maximized when

is minimized

• Thus the optimal decoder computes the squared Euclidean

distance between the received sample and all the modulated

codewords and selects the codeword that minimizes this last

expression as the transmitted codeword estimate

– Hard to do for long codes which is why we study various

other encoding/decoding techniques

19

Example 3

Exercise. BSC. Hard Decisions.

Let

 10011v

say

 11001r

If
pPP )10()01(

then compute p(r|v).

20

Example 3 Solution

Example. BSC. Hard Decisions.

Let

 10011v

say

 11001r

Suppose pPP )10()01(then

  ),(),(32)1()1()1()1()1(| vrdnvrd pppppppppvrp 

Hamming Codes

22

Hamming Codes

• Hamming codes were the first class of linear codes designed for

error correction

• For any positive integer m >= 3 there is a Hamming code such

that

– Code length: n = 2m - 1

– Number of information symbols: k = 2m – m – 1

– Number of parity check symbols: n – k = m

– Error-correcting capability: t = 1 (dmin = 3)

23

How Hamming did it

• The syndrome results from writing a 0 for each of the parity bits

that are correct and a 1 for each failure

• We can think of the syndrome as an m-bit number so it can

represent at most 2m things

• We need to represent the state of all the message symbols

being correct plus the location of any single error in the n bits

thus 2m >= n+1

24

Example 4

Example. Let us design for k = 4 message digits. Let m = 3. Note that 2
3
 >= (4+3)+1 = 8.

In fact, 2
3
 = 8.

Position Binary Rep

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

We will use positions 1, 2, 4 of the code vector for the 3 parity checks. Every position

that has a 1 in the last column of the binary rep. is the first parity check. The second

parity check covers the next column over and so forth.

The 1st parity check covers positions 1, 3, 5, 7.

The 2nd parity check covers positions 2, 3, 6, 7.

The 3rd parity check covers positions 4, 5, 6, 7.

Example 4 (cont.)

25

Encode:

Position 1 2 3 4 5 6 7

Message - - 1 - 0 1 1

Encode 0 1 1 0 0 1 1

Receive 0 1 0 0 0 1 1

 error

Decode:

Check 1 1 3 5 7

 0 0 0 1 fails => 1

Check 2 2 3 6 7

 1 0 1 1 fails => 1

Check 3 4 5 6 7

 0 0 1 1 correct =>0

The syndrome is 0 1 1 which is the binary rep. of 3 so position 3 is in error. We add 1 to

position 3 of the received vector to get

 0 1 1 0 0 1 1

as the decoded error vector.

Supplement Presentation

Where do the 1’s and 0’s come from?

27

Modulation/Demodulation Example

-1

-0.5

0

0.5

1

0 0.002

-1

-0.5

0

0.5

1

0 0.002

X

X

cos2pfct

cos2pfct

1

0

  1
2

0


T

T

  1
2

0


T

T

cos2pfct

-cos2pfct

Note: When we modulate we can

map a 0 to -1

28

Modulation/Demodulation Example (cont.)

-1

-0.5

0

0.5

1

0 0.002

X

cos2pfct

The above is a noisy version of a +1 signal

  ?
2

0


T

T

29

On Hard and Soft Decisions

• For some codes such as Hamming codes and Reed-Solomon

codes we usually use hard decisions in the decoding algorithms

– By this we mean we make a decision on each received bit

coming out of the demodulator as being a 1 or 0 or perhaps

(1 or –1)

• For codes such as turbo codes we make soft decisions

– By this we mean we quantize the demodulator output using

more than 1 bit

– This way we have more resolution in the demod outputs

which we can often use to improve the BER performance

over using hard decisions

30

Example

• Suppose we use a simple repeat code (repeat the bit 3 times)

and transmit 1 1 1

1-1

1-1

0

0

1-1 0

31

Example (cont.)

• Say we receive the following

• Making hard decisions we get 1 1 0 (1 1 -1) so we decide 1 was

sent

1-1 0

1-1 0

1-1 0

0.9

0.5

-0.2

32

Example (cont.)

• But if we receive

• Making hard decisions we get 1 0 0 so we decide 0 was sent

and thus we make an error

• But if we use soft decisions in this example we get the metrics

2.66 (for 1) and 5.06 (for –1) so we decide correctly that 1 was

sent

1-1 0

1-1 0

1-1 0

0.9

-0.2

-0.1

Example (cont.)

• However if we receive

• Making hard decisions we decide 1 was sent

• Making soft decisions we decide 0 was sent (an error)

• Despite this last example soft decisions give better BER

performance and are preferred if the decoding algorithm can

utilize soft decisions

33

1-1 0

1-1 0

1-1 0

0.2

-0.9

0.1

Confidence Intervals

Simulation and Coding

• Suppose we have a code for which we do not have an analytic

expression for the decoded probability of codeword error

– Many recently developed codes fall into this category (turbo

codes, LDPC codes, etc.)

• We can simulate the decoding process and estimate the

probability of codeword error by counting errors that occur (we

know the information sequence so we can do this)

• Question: How many errors should you count before you can

state confidently that you have a reliable estimate for the

probability of codeword error for the code?

35

Standard Normal Density

36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

Series1

Confidence Intervals

37

Z

n

PP

PP

P

PnPn

ZZ

n

PP

PP

PnP

nPPn

PnPnPPn

nx
n

x
P

P

P

cwcw

cwcw

cw

cwcw

cwcw

cwcw

cwcw

cwcw

cwcwcwcw

cw

cw

cw

~
)ˆ1(ˆ

ˆ

 use unknown we is ˆ since

andenough accurate be ion toapproximat for this 5)ˆ1(and 5ˆ need We:Note

 variablerandom normal standard theis where,~
)1(

ˆ

)1(

ˆ

So,

)1(deviation standard and mean with ddistribute binomially is ˆ that Note

simluated codewords ofnumber ,counted errors ofnumber ,ˆ

error codeword ofy probabilit estimatedˆ

error codeword ofy probabilit
























Confidence Intervals (cont.)

38

4

2/

2/

2/2/

1096.1001.0

be tointerval confidence thefind We

).96.1 (so interval confidence 95% a want weand 001.0ˆ

so errors 100 counted we000,100 with Suppose :

)ˆ1(ˆ
ˆ

as for interval confidence)%1(100 aget to

)ˆ1(ˆ

ˆ

solvecan We


























ZP

nExample

n

PP
ZP

P

Z

n

PP

PP
Z

cw

cwcw
cw

cw

cwcw

cwcw

