
13.0 Random Processes

13.1 Introduction

Definition: A random process is a set of indexed random variables X(u, t)
defined on (U, T, P ) where t takes values in some index set T .

For any fixed t = t0 ∈ T, X(u, t0) is a random variable.
For a fixed u = u0 ∈ U, X(u0, t) is a sample function.

If T is finite, we have a random vector.
If T is countable, we have a random sequence.
If T = R, we have a random process.
If T = Rn, we have a random field.
The case T = R2 is used in image processing.

We often write X(t) for X(u, t)

Characterization of Random Process:
Random Variable: FX(x) = P (X ≤ x)
First order distribution and density of a random process,

FX(u, t) = P (X(u, t) ≤ x),

fX(u, t) =
dFX(u, t)

dx
.

In general, random variables for different t ∈ T are neither independently
nor identically distributed, so 1st order pdf does not characterize the ran-
dom process.

N th order distribution and pdf:

FX(x1, · · · , xn; t1, · · · , tn) = P (X(u, t1) ≤ x1 · · · , X(u, tn) ≤ xn)

leads to FX(x1, · · · , xn; t1, · · · , tn) which contains all information available.

This is usually too complicated to work with. Instead we rely on 1st and 2nd

order statistics. Note that these completely characterize the Gaussian case
and is often good enough for other distributions.
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13.2 The Second Moment Theory of Random Processes

Mean:
μX(t) = E [X(u, t)] ∀ t ∈ T

=
∫ ∞

−∞
xfX(x, t) dx

Correlation:

RX(t1, t2) = E [X(u, t1)X
∗(u, t2)] ∀ t1, t2 ∈ T.

=
∫ ∞

−∞

∫ ∞

−∞
x1x2fX(x1, x2; t1, t2) dx1dx2

Covariance:

KX(t1, t2) = E [(X(u, t1)− μX(t1))(X(u, t2)− μX(t2))
∗]

KX(t1, t2) = RX(t1, t2)− μX(t1)μ
∗
X(t2)

13.3 Examples of Random Processes

1)
X(u, t) = A(u) ∀μ ∈ U, t ∈ T

A(u) is a random variable with mean m and variance σ2

μX(t) = E [A(u)] = m (not dependent on t)

RX(t1, t2) = E [X(u, t1)X
∗(u, t2)] = E [A(u)A(u)] = σ2 + m2

KX(t1, t2) = σ2

Note When we compute μX(t) as E [X(u, t)], then we are in effect comput-
ing the ensemble average for each t. Similarly for RX and KX .
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Say, Z(u) ∼ N(0, σ2). X(u, t) = Z(u)

μX(t) = 0, KX(t1, t2) = σ2

Let us observe this X(u, t) over time t. X(u, t) does not change over time.
We just observe some constant sample and if we do this many times on the
average the constant will be 0 but any particular outcome, i.e., X(u0, t) is
some constant Z(u0).

So, time average of X(u0, t) is a constant and not necessarily equal to the
ensemble average for some X(u, t0).

If time average equals to ensemble average, we have an ergodic process.

2)
X(u, t) = sin(t− φ(u))

φ(u) ∼ U(−π, π)

So,

fφ(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2π
|φ| < π,

0, elsewhere

μX(t) = E [sin(t− φ(u))]

=
∫ π

−π

1

2π
sin(t− φ)dφ

=
1

2π
cos(t− φ)|π−π = 0

KX(t1, t2) = RX(t1, t2)

E [sin(t1 − φ) sin(t2 − φ)]

=
1

2
E [cos(t1 − t2)− cos(t1 + t2 − 2φ)]

=
1

2
cos(t1 − t2)− 1

4π

∫ π

−π
cos(t1 + t2 − 2φ)dφ

︸ ︷︷ ︸
0
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KX(t1, t2) =
1

2
cos(t1 − t2)

Note KX(t1, t2) is a function of (t1 − t2) only. So,

KX(t1 + τ, t2 + τ) =
1

2
cos(t1 − t2)

This is 2nd order stationarity.

13.4 Properties of Correlation Functions

1) μX(t) is any real function defined on T .
2) RX(t1, t2) = R∗

X(t2, t1)
3) RX(t1, t2) is a non-negative definite function.
4) RX(t, t) ≥ 0 ∀t ∈ T .

5) |RX(t1, t2)| ≤
√

RX(t1, t1)
√

RX(t2, t2)

1),2),3) are necessary and sufficient condition for the existence of a random
process with mean μX(t) and correlation RX(t1, t2).
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14.0 LTI Systems

14.1 Definitions

Here let H be a mapping
H : L1 → L2

where, L1 and L2 are two linear spaces.

Definition: H is said to be a linear system if

H(ax) = aH(x)

H(x1 + x2) = H(x1) + H(x2)

for scalar a and x1, x2 ∈ L1.

Translation (Shift) Operations

Let T be an Abelian (commutative) group with binary operation “+”, i.e.,

1. t1, t2 ∈ T ⇒ t1 + t2 ∈ T

2. t1, t2, t3 ∈ T ⇒ t1 + (t2 + t3) = (t1 + t2) + t3)

3. ∃ 0 ∈ T such that t + 0 = 0 + t = t ∀ t ∈ T

4. For every t ∈ T ∃ t−1 ∈ T such that t + t−1 = 0 [t−1 = −t]

5. (Abelian) For every t1, t2 ∈ T, t1 + t2 = t2 + t1

Definition: The shift operator Tτ is defined as

Tτ (x)(t) = x(t + τ)

for t ∈ T , “+” is the binary operation. Here T is an Abelian group.

Note: Tτ1(Tτ2(x)) = Tτ1+τ2(x).

Definition: A linear system H is said to be time invariant or shift invariant
if

H(Tτ (x)) = Tτ (H(x))
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i.e., H commutes with Tτ .

Eigenfunctions
If H is an LTI (or LSI) system then the functions

ef (t) = ei2πft, ∀ t ∈ T

are the system eigenfunctions, i.e.,

Hef = H(f)ef

where,

i. f ∈ {0, 1/n, 2/n, . . . , (n− 1)/n} for T = [0, 1, 2, . . . , n− 1]

ii. f ∈ [−1/2, 1/2] for T = Z

iii. f ∈ [0, ±1/T, ±2/T, . . .] for T = [0, A)

iv. f ∈ [−∞, ∞] for T = R

14.2 Discrete Time Systems

14.2.1 Eigensequences

Let H be a discrete time invariant linear system with T = Z, so t ∈
{0,±1,±2, . . .}. Let

ef (n) = ei2πfn.

We will show
Hef = H(f)ef

where
H(f) =

∑
k

h(k)e−i2πfk.

Now
Hef = H(ef)(n) = h(n) ∗ ef(n)

=
∑
k

h(k)ei2πf(n−k) = ei2πfn
∑
k

h(k)e−i2πfk = ei2πfnH(f) = H(f)ef .

2



Now consider x(n) = ei2πfn. If x(n) is operated on by H then the output
y(n) is

y(n) = ei2πfnH(f)

where H(f) is a constant for a fixed f . Now let D−k denote a delay of the
input by k samples. Then

D−kH {x(n)} = HD−k {x(n)} .

Define the impulse response

h(n) = H {δ(n)}
where δ(n) is the delta function that has the value 1 at n = 0 and is 0
otherwise. Then

x(n) =
∑
k

x(k)δ(n− k)

which is a weighted sum of impulses. Thus,

h(n) = H {x(n)} = H

{∑
k

x(k)δ(n− k)

}
=
∑
k

x(k)H {δ(n− k)} .

Now

H {δ(n− k)} = HD−k {δ(n)} = D−kH {δ(n)} = D−kh(n) = h(n− k).

So
y(n) =

∑
k

x(k)h(n− k) =
∑
k

h(k)x(n− k).

Now let x(n) be the eigensequence ei2πfn. Then

y(n) = H(f)x(n) = x(n)H(f) = ei2πfn
∑
k

h(k)e−i2πfn.

Note
H(f) =

∑
k

h(k)e−i2πfn

is an eigenvalue for a fixed f . H(f) is a Fourier series and denotes the
frequency response. Thus, h(k) are the Fourier series coefficients of H(f),
i.e.,

h(k) =
∫ 1/2

−1/2
H(f)ei2πfkdf.
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Note that H(f) is periodic with period 1 = 1/2− (−1/2). Also, H(f) exists
for systems for which

∑
k |h(k)| <∞.

14.2.2 Fourier Analysis

Note that if y(n) = x(n) ∗ h(n) then Y (f) = X(f)H(f).

Now consider the case

y(n) =
M∑

k=0

bkx(n− k)−
N∑

k=1

aky(n− k).

Then

Y (f) = X(f)
M∑

k=0

bke
−i2πfk − Y (f)

N∑
i=1

ake
−i2πfk.

So

H(f) =
Y (f)

X(f)
=

∑M
k=0 bke

−i2πfk

1 +
∑N

i=1 ake−i2πfk

which is the frequency response of the system.
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15.0 Wide Sense Stationary (WSS) Random Processes

15.1 Definitions

Definition: A random process X(u, t) is stationary if

F (Tτ (x)) = F (x)

Definition: A random process is wide sense stationary if it has time in-

variant 1st and 2nd order statistics.

So, 1) μX(t) = μX(t + τ) Let τ = −t

μX(t) = μX(0) −→ some constant

2) RX(t1, t2) = RX(t1 + τ, t2 + τ) Let τ = −t2

RX(t1, t2) = RX(t1 − t2, 0) = RX(t1 − t2)

15.2 Power Spectral Density (PSD) in Discrete Time Systems

Positive Semi-Definite Property

N∑
k=−N

N∑
�=−N

akRX(k, �)a∗
� ≥ 0 ∀N ∈ T (discrete)

Let ak = e−i2πfk. Assume X(u, n) is WSS.

N∑
k=−N

N∑
�=−N

e−i2πf(k−�)RX(k − �) ≥ 0

Let m = k − �; n = k + �

=⇒
2N∑

m=−2N

(2N + 1− |m|)e−i2πfmRX(m) ≥ 0 (think)

divide by (2N + 1), take limit,

lim
N→∞

2N∑
m=−2N

(1− |m|
2N + 1

)e−i2πfmRX(m) ≥ 0
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Define

SX(f) =
∞∑

m=−∞
RX(m)e−i2πfm

︸ ︷︷ ︸
Power Spectral Density

, f ∈
[
−1

2
,
1

2

]

So, PSD = Fourier Transform of autocorrelation function.

Properties

1) RX(m) are Fourier Series coefficient for SX(f).

RX(m) =
∫ 1

2

− 1
2

SX(f)ei2πfmdf

RX(0) =
∫ 1

2

− 1
2

SX(f)df

RX(0) = E [|X(u)|2]
2) Periodic: SX(f) = SX(f + k) for integer k.

3) Any P.S.D. correlation has a non-negative PSD.

4) SX(f) is real.

5) If RX(u) is real, then SX(f) = SX(−f).
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16.0 Stochastic Inputs to LSI Systems

16.1 General Systems

y(u, n) =
∞∑

m=0

h(m, n)x(u, m)

h(m, n) is not shift-invariant in general and y(u, n) does not exist in general
(there may be some sample processes that are not summable).

y(u, n) exists in the mean square sense if

1) BIBO
2) Variances are bounded

Let yk(u, n) =
∑k

m=0 h(m, n)x(u, m). If for every ε > 0 ∃ a number N(ε) s.t.

E [|yk(u, n)− y�(u, n)|2] < ε ∀k, � > N(ε)

then
yk(u, n)

m.s.−→ y(u, n)

Consider WLOG that k > �,

E
[
|yk(n)− y�(n)|2

]
= E

⎡
⎢⎣
∣∣∣∣∣∣

k∑
m=�+1

h(m, n)x(m)

∣∣∣∣∣∣
2
⎤
⎥⎦

=
k∑

m=�+1

k∑
p=�+1

h(m, n)h∗(n, p)RX(n, p)

≤
k∑

m=�+1

k∑
p=�+1

|h(m, n)||h∗(n, p)||RX(n, p)|

≤ [
k∑

p=�+1

|h(n, p)|(RX(p, p))
1
2 ]2

If

lim
k→∞

k∑
p=0

|h(n, p)|(RX(p, p))
1
2
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exists, then as k, � −→ ∞
k∑

p=�+1

|h(n, p)|(RX(p, p))
1
2 −→ 0

Theorem: If X(u, n) is a sequence of random variables with RX(n, n) <
∞ ∀n and h(n, m) is absolutely summable, i.e.,

∞∑
m=0

|h(m, n)| <∞ ∀n

then,
∞∑

m=0

|h(n, m)|x(u, m)

exists in the mean square sense.

16.2 WSS in LSI Systems

Assume h(n) is causal, LSI, BIBO stable. Recall we have BIBO stability and
causality if and only if

∑∞
n=0 |h(n)| < ∞, and h(n) = 0 for n < 0. Assume

x(n)is WSS and E [x(n)2] <∞.

Mean
E [y(n)] = E [h(n) ∗ x(n)]

=
∞∑

k=0

h(k)E [x(n− k)]

μy = μx

∞∑
k=0

h(k) (constant)

Cross Correlation
RXY (n, m) = E [x(u)y∗(m)]

= E [x(u)
∞∑

k=0

h∗(k)x∗(m− k)]

=
∞∑

k=0

h∗(k)RX(n, m− k)

=
∑
k

h∗(k)RX(n−m + k)
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Let � = n−m

RXY (�) =
∞∑

k=0

h∗(k)RX(� + k)

= RX(�) ∗ h∗(−�)

Similar derivation for cross covariance, KXY (n, m)

Correlation of Y
RY (n, m) = E [y(n)y∗(m)]

= E [
∑
p

h(p)x(n− p)y∗(m)]

=
∞∑

p=0

h(p) E [x(n− p)y∗(m)]︸ ︷︷ ︸
RXY (n−p−m)

=
∞∑

p=0

h(p)
∞∑

k=0

h∗(k)RX(n− p−m + k)

Let q = n−m

RY (q) =
∞∑

p=0

∞∑
k=0

h(p)h∗(k)RX(q − p + k)

= h(q) ∗RX(q) ∗ h∗(−q)

Recall

RY = HRXH† (note similarity between time domain and freq. domain).

Similar derivation for covariance of Y, KY (n, m).

Fourier Space

Define a cross-spectral density as

SXY (f) =
∞∑

n=−∞
RXY (n)e−i2πfn, f ∈

[
−1

2
,
1

2

]

=
∞∑

n=−∞

∞∑
k=0

h∗(k)RX(n + k)e−i2πf(n+k)ei2πfk
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or
SXY (f) = SX(f)H∗(f).

Now,

SY (f) =
∞∑

n=−∞
RY (n)e−i2πfn

= H(f)H∗(f)SX(f).

SY (f) = |H(f)|2SX(f).

Recall, RY (q) = h(q) ∗ h∗(−q) ∗RX(q)

Ex1 Suppose x(n) is an i.i.d., zero-mean sequence, var = σ2
X .

KX(n) = σ2
Xδ(n)

SX(f) =
∞∑

n=−∞
KX(n)e−i2πfn

= σ2
X −→ ”White Noise”

(power equally spread over all frequences)
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Consider the moving average

y(n) =
M∑

k=0

bkx(n− k).

Then

H(f) =
M∑

k=0

bke
−i2πfk.

Thus

SY (f) =

∣∣∣∣∣
M∑

k=0

bke
−i2πfk

∣∣∣∣∣
2

σ2
X .

Now consider the special case M = 1, b0 = h(0) = 1, b1 = h(1) = −1 and
h(n) = 0 for n 	= 0, 1. Then

y(n) = x(n)− x(n− 1).

So

H(f) =
1∑

k=0

h(k)e−i2πfk = 1− e−i2πf .

|H(f)|2 = 2− 2 cos(2πf)

and
SY (f) = σ2

X(2− 2 cos(2πf)).
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17.0 Spectral Concepts

17.1 Spectral Densities

SX(f) =
∞∑

k=−∞
RX(k)e−i2πfk =

∞∑
k=−∞

KX(k)e−i2πfk + m2
Xδ(f)

where δ(f) is a generalized function defined by its sifting property

∫ ∞

−∞
x(f)δ(f − f0)df = x(f0)

provided x(f) is a function continuous at f = f0. So

RX(n) = KX(n) +
∫ 1/2

−1/2
m2

Xδ(f)ei2πfndf

= KX(n) + m2
X .

In general, if
RX(n) = KX(n) +

∑
k

ake
−i2πfk

then
SX(f) = S̃X(f) +

∑
k

akδ(f − fk)

where
KX(n)←→ S̃X(f).

17.2 Spectral Factorization

System Function

Consider
H(z) =

∑
n

h(n)z−n.

The region of convergence (ROC) of this z-transform is

ROC =

{
z :

∑
n

|h(n)z−n| <∞
}

.
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This guarantees uniform convergence.

Causal Sequences

Here h(n) = 0 for n < 0. Then

H(z) =
∞∑

n=0

h(n)z−n = h(0) + h(1)z−1 + h(2)z−2 + · · · .

Note that h(n) is causal if and only if H(z) converges as |z| → ∞.

Stable Causal Sequences

h(n) is causal and stable if

∞∑
n=0

|h(n)| <∞.

This is equivalent to
∞∑

n=0

|h(n)z−n||z|=1 <∞.

Thus causal h(n) is stable if and only if H(z) converges on the unit circle in
the z-plane.

Poles

Here we identify those values of z that make H(z)→∞.

Example:
h(n) = αnu(n), |α| < 1.

H(z) =
∞∑

n=0

αnz−n =
1

1− αz−1
.

To find the pole we set (1− αz−1) = 0 to get α = z.

Zeros

Here we identify those values of z that make H(z) = 0.
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Example:
h(n) = δ(n)− αδ(n− 1).

H(z) = (1− αz−1.)

To find the zero we set (1− αz−1) = 0 to get α = z.

Poles and ROC

ROC for causal sequences= {z : dmax < |z| <∞} where dmax is the mag-
nitude of the largest pole.

Poles and Stability

Since ROC must include the unit circle all poles must lie inside the unit
circle.

Rational System Function

Consider the linear difference equation

y(n) =
M∑

k=0

bkx(n− k)−
N∑

k=1

aky(n− k).

Take z-transform

Y (z) =
M∑

k=0

bkz
−kX(z)−

N∑
k=1

akz
−kY (z)

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−k

∑N
k=1 akz−k

.

Poles occur at roots of(
1 +

N∑
k=1

akz
−k

)
= dj , j = 1, 2, . . . , N.

Zeros occur at roots of(
M∑

k=0

bkz
−k

)
= cj , j = 1, 2, . . . , M.
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SY (f) = |H(f)|2SX(f) = H(f)H∗(f)SX(f)

= H(z)H∗(z)SX(f)

∣∣∣∣∣
z=ei2πf

.

If h(n) is real then H(z) = H∗(z∗)⇒ H∗(z) = H(z∗). Now

H∗(z)

∣∣∣∣∣
z=ei2πf

= H∗ (ei2πf
)

= H
(
e−i2πf

)
= H(z−1)

∣∣∣∣∣
z=ei2πf

.

So for h(n) real

SY (f) = H(z)H(z−1)SX(f)

∣∣∣∣∣
z=ei2πf

.

Example: Let x(n) be an i.i.d. sequence with mean zero and variance
σ2 = 1. x(n) is applied to a filter with z-transform H(z). The output is
y(n). Say

KY (m, n) = α|m−n|, |α| < 1 and is real.

Find H(z).

Let k = m− n. Then
KY (k) = α|k|.

SY (f) =
∞∑

k=−∞
α|k|e−i2πfk

=
∞∑

k=0

αke−i2πfk +
0∑

k=−∞
α−ke−i2πfk − 1

=
∞∑

k=0

(
αe−i2πf

)k
+

∞∑
k=0

(
αei2πf

)k − 1

=
1

1− αe−i2πf
+

1

1− αei2πf
− 1

=
1− α2

(1− αe−i2πf) (1− αei2πf )
.

Replace ei2πf by z. Then

SY (f) =
1− α2

(1− αz−1)(1− αz)
.
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We have poles at z = α and z = 1/α. We can write

SY (z) = H(z)H(z−1)

where

H(z) =
(1− α2)1/2

1− αz−1
.
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