5.0 Z-transform

5.1 Introduction

The z-transform is another tool that aids us in signal analysis and filter
design. The z-transform exists for a broader class of signals than the discrete-
time Fourier transform (DTFT) which will be studied later. We will also see
a relationship between the z-transform and the DTFT.

5.2 Forward Z-transform

Definition: The z-transform, X(z), of a sequence, x(n), is defined by

n=—oo

whenever this sum is bounded. This definition also requires that the values
of the complex number z be specified for which the sum exists (if any such z
exists at all).

Definition: The set of all 2z for which the above sum exists is called the
region of convergence (ROC).

Special Case: If x(n) is a finite sequence, say z(n) is defined for Ny < n <

NQ, Nl, NQ S Z7 then
Na

n=N1

and the ROC is all z except for possibly z = oo and/or z = 0.

Example: Let

Then,
X(z)= Y aun)z™"=>a"2"=> (042 l)n
n=—00 n=0 n=0




provided
‘az’l‘ <1=ROC={z:|z| > |a|}.

x(n) is an example of a right-sided sequence.

Definition: z(n) is called a right-sided sequence if 3 ny such that x(n) =
0Vn< no.

Here the ROC is the exterior of a disc.

Example: Let

r(n) = —a"u(—n —1).
Then,
(o] _1 o
X(Z) = Z —Oé”u(—n — 1)2_” = — Z Ayt — — Z (a_lz)
A n=-—o0 n=1
. a lz _ z
C l-alz z—a
provided

‘oflz‘ <1=ROC={z:]z] < |a|}.
This z(n) is an example of a left-sided sequence.

Definition: x(n) is called a left-sided sequence if 3 ng such that z(n) =
0V n>ng.

Here the ROC is the interior of a disc.

Note: Let Z denote the z-transform operator. Then, from the last two
examples we see that

Z[a"u(n)] = Z [-a"u(—n — 1)]

except for their ROC. So we must always specify the ROC of the z-transform
so that we can uniquely associate it with the sequence from which it came.

Initial Value Theorem: 1If z(n) = 0 for n < 0 (i.e., z(n) is a causal
sequence) then
z(0) = lim X(2).

zZ—00
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Proof:

X(z) = i x(n)z™" = ix(n)z_”

lim X(z) = lim (x((]) +ao()z +2(2)272 + - ) = z(0).

zZ—00 zZ—00

5.3 Properties of the Z-transform

Linearity:
Z[axi(n) + bxa(n)] = aZ [x1(n)] + bZ [22(n)] .
Shift:
x(n —nyp) Z, 27" X (2).
Proof:
Zlz(n—ng)] = f:: x(n—mng)z™" [let n =n—ng
= /_io: z (n') 2~ o) — ;7 X (7).

ROC = ROC, except possibly at z =0 or z = cc.

Convolution:

x1(n) * z2(n) Z, X1(2)Xa(2).
Proof:

o0 o0 o0 (e 9]

S Y mk)zan—k)z= D> a(k) | D xa(n—k)z"

n=—o0 k=—oo k=—00 n—=—oo



Dual:
x1(n)za(n) Z, X1(2) * Xa(2).

Derivative:
Z d
o x
Proof:
Yo nx(n)z" =z Y na(n)z~ "

Now,

d

X(z) =) z(n)z"= y —X(z an ~(nt1)
z

so the result follows.

ROC = ROC, except possibly at z =0 or z = o0.

Scaling:
a"x(n) Z, X(z/a).

Proof:
Za”x(n)z‘” = Zx(n)(z/a)_” = X(z/a).

If initial ROC was r1 < |z| < ro then new ROC is r; < |z/a| < ro.
Symmetry: Let x(n) be real (so z(n) = z*(n)).
S0
=> 2 (n)z* " =) z(n) " = X(2) = X(2%).
Example: Evaluate the following infinite sum using z-transform properties:
S = i n*(1/2)"
n=0
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Solution: Let us write S as
S = Z n?27",
n=0

Let z(n) = u(n) and let x1(n) = nz(n). Then,

d
X =—z2—X(2).
() = = X ()
Let zo(n) = nx(n) = nxy(n). Then,
d d d
Xo(z) = _ZEXI(Z) =z l—zaX(z)]
Now,
1
X(2) = Zfuln)) = ——. |2/ > 1,
z71 z7l 4 272
=>X(z2)=——m=>X()= —.
1(2) (1 . 2_1)2 2(2) (1 . 2_1)3
We note that
S = XQ(Z) :2:> S =6.

5.4 Some Results From Complex Variable Theory

To take the inverse z-transform directly we need to use complex analysis.

Definition: A function of the complex variable z is analytic at a point zq if
its derivative exists at 2y and there exists some neighborhood of z, in all of
whose points f is also differentiable.

2

Example: f(z) = z* is analytic everywhere.

Ezxample: f(z) =|z|? is analytic nowhere. Why? Consider f'(z).

)=t LA = IC)

if this limit exists.
Az—0 AZ




Let
flz+Az) = f(2)  |z+ Az|2 — |2/
Az Az
(2 + A2) (2" + (A2)") — 22*
Az

h(z) =

Az)*

Az

If the above limit exists as Az — 0, we can let Az = Az + iAy approach 0
in any manner.

=z"+ (Az)*+z(

i. Let Az = Az + 40 (approach 0 along real axis). So, (Az)" = Az. We
get hy(z) = 2" + 2.

ii. Let Az =0+ tAy (approach 0 along imaginary axis). Thus, (Az)" =
—Az. We get ho(z) = z* — 2.

The limit must be unique. Therefore,
hi(z) =ha(z) = 2"+ 2=2"—2=2=0.

So, f'(z) exists only at the origin and f'(z) does not exist in any other point
in a neighborhood of the origin = f(z) = |z|* is analytic nowhere.

Cauchy-Goursat Theorem: If a function f is analytic in a region R
and on its boundary C, then

w]g f(z)dz = 0.




Convention: The positive direction of transversing a path is the counter clock-
wise direction and will be denoted with a down arrow ;. The clockwise di-
rection will be denoted with an up arrow ;.

Cauchy Integral Formula
Consider

f(z)

Z— 20

where f(z) is analytic in a region R and on its boundary C and z, is an
interior point of R. Note that g(z) is not analytic at z = z,.

9(z) =

C

Consider

By Cauchy-Goursat

7{ dz+/ dz+7{ dz—/ g(z)dz=0
:>j{ dz-j{ g(z)dz.



Cy
becomes

lj{ g(z)dz g(z)dz

c C1

On C): 2=z + e’ = dz =iee’?db.

w]gl g(2)dz =, LZ)dz = /0 Mzeewdﬁ = /O%i-f (zo + eew) do.

12— 2 eet?
As e — 0,
ntee? - = f (zo + eew) — f(20) (a constant).
f(2) m
=19 ———dz= f(2) idf = 2mi - f (20)
C1 zZ — ZO 0
or,

/() dz =2mi - f (20)

1
CzZ—2

This last result is the Cauchy Integral Formula.

Definition: f (zy) is called the residue of g(z) = f(z) at the point z = zy.
Z—z
Note that
f (20) = lim g(2) (z = ).
Now

/() ———dz =2mif (2) .

CzZ—2
Let 2 =&, zp = 2. Then,

o, e —2ris ).



So,

12) ilf f(&) dc.

" omie E—z
Thus,

o L 1
£ = 5 6

(2) = 2]{ f(€) de

~ omiJo (6= 2)

oy N | f(€)
/! )(Z)—%W]émdf

or back to original notation we have

!
1 o) = g, L

- )
z
9(2) = m
Then,
f(2)
dz = ]{ —————5d
w]{Cg(Z) S A e L
and i) T —
z Uy’ me
A S P
%} (2 — z0)™ - (m — 1)l dzm-1 (2 |z
Definition: tim 4 ™ is called the residue of
efinition: (m = 1] lim 9(z) (z — 2z9)" is called the residue o
f(2)
at the point z = 2y, denoted Res g(2) [,_., .

The above easily generalizes to the residue theorem.



Residue Theorem: Let g(z) be a function which is analytic in a region
R enclosed by the curve C except at some finite number of interior points:
20, 21, -.., Zn. Then,

w]{Cg(z)dz =2mi ) Res g(2) |,_..

1=0

where,
1 ) dmi—l
R‘es g(Z) ‘Z:Zi: (m _ 1)' Zh_llg,lz dZmiil g(Z) (Z - Zi)

mg

and m; is the power of (z — z;) in the expansion of g(z) about z; as a Laurent
series, i.e., m; is the order of the pole z;.

22 -1
d
%1224-1 i

Example: Evaluate

where C' is
a. |z| =1/2.
b. [z —i| =1

Solution:

2241

Yy
1
C
C\\ x %22_1(12:0
i

21 21
ij{ z dz = 2milim = (z—1i)=—2m
c 1 +1

b. C 2%+ =i 22
€T
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Example: Evaluate

where

Solution:

2z

e

T _1¢ 1)2(12

C={z:]z] =2}.

\\C

-
N

Y

2z

e

o1 1)2dz

A g
(2—1)2=1dz (2 —1)?

d e

11

—1)? = 2mi [2¢* |, | = 4mie®.



5.5 Inverse Z-transform

5.5.1 Direct Method

n=—oo

Let C lie in the ROC of X(z) and enclose the origin. So,

1 1
ﬁwjg)X(z)zk’ldz = %w]gzn:x(n)z”zkldz

1
— _ fnJrkfld )
2_w(n) 27?2'%0 : :
Counsider 1
I = —1}1{ Py P
2m Jo
Case 1: n=k.

1 1
I=5of 2 lda= g omi=1
omife® T om ™

Case 2: n<k=I1l=-n+k—-1>0.

1
I =—¢ Z'dz =0 by Cauchy-Goursat.
2mi Jo

Case3: n>k=-p=-n+k—-1<-2.

1 1 271 P11
I = —1% 27 Pdz = — ™ li 2P
c

~ omi " 2mi(p— 1)l =m0 o1 2w
1 .t
oD g =0
So,
1
;x(n)%%} 2y = (k)
since

1
271

17{ 2"y = §(n — k).
c
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= z(k) = 1@_9{0 X (2)zF 'dz.

" 2mi

Thus, we have the inversion formula

1
x(n) = ﬁ%} X(2)2" tdz

or
z(n)= > Res X(2)2" "
all poles
inside C
Aside
Compute

o gin x
IO :/ dx.
0 T

1. We will first use contour integration. Let

1217{ e—dZ
C Zz
Iy =TIm{I}.

—r R
1 :l]{ :/ —I—/ + +/ = 0 by Cauchy-Goursat.
C Cq —R Co r

On Cy: z = Re", dz = iRedb.

eiz
L

Then,

iRe'dp

T eiR(cos 0+isin 0)
/0 Re

™ . .
S/ ‘Z-echosee—RsmG do
0

— /ﬂ efRsinede =0
0

as R — oo and 6 € (0,7) since sinf > 0 in (0,7). We can check the end
points. For § =0 or 0 =7, e "% = 1 < 00 s0

0 . ™ .
/ efRsmede + / efRsmede -0
0 T

thus, we conclude

— 0
C1
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as R — oo and 6 € [0, 7].

On Cy: z =re", dz = ire?ds.

0 6zr(cos 0+isin ) ) 0 0 0
/ —dz —/ - iredo :/ jeireostemrsing gg T8 / idf = —
Cy % rett n m

7
—r iz R otz 00 eix
lim —dz + —dz =7 = —dx = 1.
RT:%O -R Z r  Z -0 T

Thus,

© cosT _ [ sinx )
dr +1 dr = mi
T

- T —00

:>/OO Cosxdx—()and /Oo Smxdxzﬂ

-0 T

= / Smxdx =m/2.
0

T

2. We can also solve this integral using the Fourier method. Let

X(f) = /Oo z(t)e 2 qt

” (t) = / O:O X(f)e s,
Define,
B(®) :{ (1) e
Then,
FlRa(t) = T
Thus,

o sin x 1 oo sinx % gin 27Tf
b =g N
0 T 2/)- @ T2

_ z/oo SinQerﬂ”ftdf‘ T SlH27Tf ‘
2 J-x 7Tf t=0 2 7Tf t=0

= gRl(t)\ = /2.

t=0
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However, contour integration can be used to evaluate integrals which other-
wise might be difficult even with Fourier methods.

End Aside

5.5.2 Partial-Fraction Expansion

Here we will be concerned with rational z-transforms of the form

M
Z bkz’k
_ k=0
N
Z akz_k
k=0

The roots of D(z) are called poles. The roots of N(z) are called zeros.

If M < N and ay # 0 then X (z) is said to be proper.

Setting N(z) = 0 we get M roots: ¢;, i =1,2,..., M (zeros).
Setting D(z) = 0 we get N roots: dj, j =1,2,..., N (poles).

We can now write

—=
/N
—
|
S

N
L
N—
S
o

s
O
I
s

T
N
I
|

—=
/
—_
|
&
I\
L
~——
S
=]

<.
I
—

X(z)=0atz=g¢;, i=1,2,..., M (zeros).

X(2) mo0at z=d;, j=1,2...,N (poles).

Each (1 — ¢;271) gives a pole at z = 0.

Each (1 —d;z7") gives a zero at z = 0.

So, we get an additional M poles and N zeros at z = 0, so we have pole/zero
cancellations.

If M > N, we get (M — N) additional poles at z = 0.
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If M < N we get (N — M) additional zeros at z = 0.
So, the total number of poles equals the total number of zeros.

Assume without loss of generality that M > N. Then,

M . N-1 .
/ _— _
;;) bz MoN Z:O brz N
X(z)=5——= ) a4+ 50— 2
Z a/ —k k=0 Z akz—k
X1(2) k=0
X2(Z):g23

It follows that
21(n) = Cny, n=0,1,....M— N,
W70 0, elsewhere.

or

z1(n) = kz_: ckd(n — k).
Now 7N
D(z) = aOkI:[ (z —dy) .

Case 1: Distinct poles, i.e., d; # d; for i # j. Expand Xiz) as partial frac-

tions.
N—

X() z_% A
Z k:l

Case 2: Multiple-order poles. A pole p of order m contributes terms of the
form 4

(z —p)

z z—dk

L i=1,2,...

3

Note: The inverse z-transform of a rational function X (z) can also be ob-
tained by long division to express it as a power series in 27! (for a causal
sequence or the causal part of a sequence) or as a power series in z (for a
noncausal sequence or the noncausal part of a sequence).

16



5.5.3 Examples and Additional Results

i) z(n) = a"u(n) Z, X(z) = p— ROC = {z: |z| > |a}.
x(n) is a right-sided sequence.

i) z(n) = —a"u(—n—1) Z, X(z) = . j = ROC ={z:|z] < |a|}.

x(n) is a left-sided sequence.

i) w(n) = a™u(n) + Fu(—n — 1) S X(2) =~ = 5

ROC = {z: |o| < |z| < |7]}-

x(n) is a two-sided sequence.

Example: Let

X(z) = .
(=) z2—2 - z+3
Find z(n) for the following ROCs.

a. |z| > 3.

b. |z| < 2.

c. 2< |z <3.
d. |z| > 2.
Solution:

a. This is a right-sided sequence so
z(n) = 2"u(n) + (—3)"u(n).
b. This is a left-sided sequence so
z(n) = =2"u(—n —1) — (=3)"u(—n —1).
c. This is a two-sided sequence so

z(n) = 2"u(n) — (=3)"u(—n —1).

17



d. This is not a valid ROC since {z : |z| > 2} includes a pole at z = —3,
so corresponding x(n) does not exist.

Let us now use residue theory on part (a) above.

2z N z 222 + 2
z2—2 243 (2—-2)(z+3)

1 222 + 2 71 1 (2z+1)
- = —f T e
z(n) mm%wz—m@+3f Toaile =213 “

X(z) =

Here we have ROC= {z : |z| > 3}.
i. Consider n > 0. Then,

2241

R P e

"(z-2)

D)

= 2" 4 (=3)", n>0.

Note: For pole at z = 2,

x(n) = ! 7{ /() dz

_%lc(z—Q)

where,
(2z+1)2"

f(z) = (z +3)

For pole at z = —3,

1 f(z)
z(n) = Q—M% mdz

(2z+1)2"
-2)

In either case, for n > 0, f(z) is analytic at the pole in question.

where,

f(z) =

18



ii. Consider n < 0. Let us look for example at the pole z = 2.

(22 4+ 1)2"

— we get a pole at z = 0 since n < 0.
(z+3) setab

f(z) =

Let us now look at some specific values of n less than 0.

For n = —1 we get
- es el - ° = :
D=2 R . T oo T o T 20
= 0.
For n = —2 we get
N Qe 2L 5 —5
W= R e g T m@ T (50
d 2241 11 121
M I )[Ry P R IR T T

=0.
Similarly, z(n) =0V n < 0.

Thus, the end result is

z(n) = [2" + (=3)"] u(n).

The above residue method as given in the book requires specific calculations
for n < 0 to see the trend. The following result avoids all of that.
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General Residue Result: Put

N(z)

ST

in proper fraction form. Then for the fractional part, X;(z), we have

zi(n)= Y Res Xi(2)2"", m>0
all poles
inside C

— > Res Xi(2)z"', m<0

all poles
outside C

where, m is the least degree of the numerator polynomial of X;(z)z""1.

Note that in the above, finding z(n) for the non-fractional part of X(z)
is easy.

Let us now apply this result to part (c) of our example.

z z 222 4 2
X(z) = = ROC = 12 < < 3}.
(2) P R EEEEE) {1z 2| < 3}
Dividing we get
12 — 2
X2 )=24+ —--—-—.
() =2+ T 5n )
So,
12 — 2
=20 B A
w(n) = 20(n) + l(z o+ 3)]
12 — 2
=26(n) + Res ——— "1 m>0
A G2 +9)
inside C
12 — 2
— Res ——————>""1 m<0.
all %;)les (2= 2)(z+3)
outside C
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The numerator is
122" — "= m=n-—1

m>0=n>1

m<0=n<0.

So,
z(n) = 26(n) + (Z_lg)ﬁz"l(z —2)| _uln—1)
12 — z 1
_mz (z+3) ZZigu(—n)

z(n) =20(n) + 2"u(n — 1) — (=3)"u(—n).
Compare this result with that obtained with PFE:

z1(n) = 2"u(n) — (=3)"u(—n —1).

Even those these two expressions look different you can check that x;(n) =
x(n) V n.

The next example shows we can obtain different representations for z(n)
even without using contour integration.

Example: Let

14271
() = 157052 ROC=H{eslef> 1}
1. Method 1.
224z 252 —0.5
X(2) = —1 .
= a5 ros - 't 15103
Now,

252 — 0.5 252 —0.5 A B

2 _15:405 (-1)(z-05) 2—-1 2-05
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2.52—0.5

oD =05 Yo
2.5z —0.5
B = —05 =-15
C-1z—05)" " "l
S0,
4 1.5 z z
X(z)=1 — =1+4+4z7"! —1.5z71 .
) =l+ - = T 5 s
Thus,
z1(n) = 0(n) + [4 = 1.5(1/2)" " u(n — 1).
i1. Method 2.
224z X(z) z+1
)= 315105 . 2-152405
Now,
z+1 B 4 3
22-152405 z—1 2z-05
So,
ya y4
X(2) =4 — .
(2) z—1 32 — 0.5
Thus,

You can verify that z1(n) = z2(n) V n.
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5.6 Transfer Functions of LTI Systems

Definition: H(z) = Z[h(n)] is called the transfer function of the LTI sys-
tem, where h(n) is the impulse response of the system.

Note: y(n) = z(n) * h(n) = Y(z) = X(2)H(z)

= H(z) =
G)=%
Example: Consider

y(n) — sy(n—1) = x(n), y(~1)=0.

Then, .
Y(z) — iz_lY(z) =X(z)= H(z) = = = T

We have a pole at z = 1/2 and a zero at z = 0.

Now let . B
z(n) =u(n) = X(2) = =
Then, )
Y(,z)—X(,z)H(,z)—Z_1 . (2_1)(2_%)
Y(z) z 2 1
z (2_1)(2_%) z—1 z—%
:>Y():22i1 zjl'

Thus, since our system is causal

1 n
y(n) = 20(m) — (5) utn).
Causality: Recall h(n) = 0 for n < 0 for a causal system. This type of
system is a right-sided sequence. So, an LTI system is causal if and only if

the ROC of H(z) is ROC ={z:|z| > r}, some r, 0 <1 < 0.
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BIBO Stability: Recall an LTI system is BIBO stable iff
> |h(n)] < .

Now,
So,

At |z| =1, i.e., on the unit circle

[H(z)| < > [h(n)].

n

This implies that an LTT system is BIBO stable iff the ROC includes the
unit circle.

Example: Suppose the step response of a certain stable, causal LTI sys-
tem is

Find h(n).
Solution: "
#(n) = u(n) = y() = (5) uln)
We have . .
X()=Tg Y=
Thus,
z—1 z z
H(z) = = — ! )
T

We need the ROC of H(z). The system is both causal and stable. Stability
implies the ROC includes the unit circle. Causality implies the ROC is the
exterior of a disc. So we have

1
ROC:{ZI|Z|>§}.
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Therefore,

h(n) = (%)nu(n) — (%)n_l u(n —1).

Example: Find the difference equation that corresponds to the transfer
function

z4+1
HzZ) = ——-—.
()= Z52:. =3
Solution: We can write
zl4 27! Y (2)
H(z) = = )
(2) 142271 =322 X(2)
Then,
Y(z) {1 +2271 — 32_2} = X(2) [2_1 + 2_2} .
Hence,

y(n)+2yn—1)—3y(n—2) =z(n — 1) + z(n — 2).

5.7 Unilateral Z-transform

This transform will be useful to us for solving difference equations with initial
conditions.

Definition: The unilateral z-transform is given by
XH(z) =) x(n)z""
n=0

Note: For causal sequences the unilateral z-transform is the same as the
(bilateral) z-transform.

Shift Property:

ZH[z(n — k)] = iox(n —k)z" = ikx(m)z—(mm
= | T a3 a(m)



n=1 n=0
So,
k
r(n—k) &= 27k [X*(z) + > x(—n)z"} , k>0
n=1
Similarly,
r(n+ k) & 2P lXJr(z) = x(n)z_”] , k>0.
n=0

Example: Consider the difference equation

y(n) — syln—1) =a(n), y(~1)= -2

Find the complete solution when x(n) = u(n).

Solution: .
YH(z) -5 Y(2) + y(—1)z| = X7 (2).
Now,
1
X+ —
(2) 1—2z71
So,
Y*(z) — 1z’lYJr(,z) +1= !
2 1—2z71
1 1 271 1
& [1——1]: —1= =
(2) |1 - 32 1— 1 1—21 z-1
Thus,
1 z 2 1
e ) GGy 1 a1
_ 2z _ 1 z ~
z—1 z—3
Therefore,



We could have proceeded as follows:

Y*(2) 1 22
z (z—l)(z—%) z—1 z-
So,
2z 2z
YH(z2) = — .
(2) z—1 z- %
Hence,
1 n
o= -2 3 o
which can be written (if we wish) as
1 n—1
y(n) = lQ - <§> ] u(n —1)

to match our solution above.
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