
EE 567 
Homework 7 solution 

 

 
 

Solution: 
Given that ÓÔ  !ÃÏÓςʌÆÔ ʃÁÎÄ ÓςÔ ÃÏÓςʌÆÔ ʐ ʃ, we have 

the cross-correlation of the two signals 
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Notice that the first term of the integral is approximately 0 since the integration time 
T satisfies Æ4ḻρ: Finally, we want to find the smallest value of † such that 
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Solution: 
Using the approximation 
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we can write Çה  as 
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In addition, we have the half-power beamwidth 
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Hence, 
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We observe that the half-power beamwidth ה  is proportional to ʇȾÄ 
(wavelength/diameter) ratio. If we would like to use a narrow beam (small ה  or 
large ÄȾʇ), then the pointing error ה  has to be small. Otherwise, we are 
going to have a huge loss on antenna gain due to pointing error. 
 

 



 
 

Solution: 
S1. 
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S2. a. 
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Hence, 
ᾀὝ πȢππφ τȢτππς 
ᾀὝ πȢππψ τȢψςψς 
ᾀὝ πȢπρφ τȢχχυρ 
ᾀὝ πȢπςφ τȢψφρφ 
ᾀὝ πȢρςφ τȢωχρτ 

b. Since the first term in z goes to 0 as 4ᴼЊ, we have 
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c. 
If the interval of integration Ὕ  ὯὝȾς  ὯȾςὪ, whereËɴ ., then the first integral 
is 0. The smallest value of Ὕ is 
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Then we have the estimate of A 
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Solution: 
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a. Let ᾀὔ ᾀ ὔ ᾀ ὔ , then 
ᾀὔ υ υȢπωωπ 
ᾀὔ ρρ τȢυτυυ 
ᾀὔ ρω τȢχσφψ 

b. As ὔᴼЊ, the first term in both ᾀ and ᾀ go to 0, then 
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c. If ὔ τὯ, where Ὧᶰὔ, then the summation in ᾀ and ᾀ are 0. Hence, we can let 
ὔ τ and get 
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Solution: 
a. If ὔ τ, then Ú ωȢωτωχ. 
b. If ὔ ψ, then Ú ωȢωτωχ. 
c. From problem 5, any ὔ that is a multiple of 4 gives us the exact estimate of A if the  
     input samples weren't quantized by the round function. 



d. However, due to the fact that ὶὲ is peroidic (with peroid ὔ τ), the 

quantization error keeps adding up when we perform summation. In order to obtain a 
better estimate of A, we need to make the sequence ὶὲ  aperiodic. 

e. Since we prevent ὶὲ   from being periodic, the estimate of A will eventually 

approach the true A as we wash out the error by increasing N.  

 


