EE 567

Homework 7 solution

Problem 1. A signal of the form
s1(t) = Acos(2m f.t + 0)

is transmitted to a receiver. The signal waveform is 7' seconds long. A
multipath version of the signal, ss(?), delayed by 7 seconds also arrives at the
receiver (you can think of this multipath signal as being just like s;(t) except
it is delayed and the amplitude is possibly scaled). The cross-correlation of
the two real signals is defined by

1 T
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Determine the smallest value of 7 that can be tolerated to ensure that the
cross-correlation of the direct path and multipath signal is less than 5% of
the direct signal power. Assume that f.7° > 1 and the multipath signal has
an amplitude that is 50% that of the direct signal when received.

Solution:
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Problem 2. In class we had that the gain for a parabolic antenna is

s N\ 2
= (3 (1)

and the half-power beamwidth is

1P .
dp = 3.06 | — | radians.
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The actual gain of the antenna will be reduced if there is any pointing error
¢ and the resulting equation is
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where A is the wavelength. Using the Bessel function approximation for small
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show that

9(¢e) = g
Plot the antenna gain (in dB) versus d/\ for ¢, = 0, 0.05, 0.1, 0.2, 0.3
degrees. You should plot each of these on the same graph. Vary d/A from 10
to 1000. You should be able to deduce from your results that pointing errors
prevent the use of very narrow beams.
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In addition, we have the hahower beamwith
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We observe that the haHpower beamwidth 0 is proportional to 1 7A
(wavelength/diameter) ratio. If we would like to use a narrow beam (smalh or

large AT1), then the pointing error N has to be small. Otherwise, we are
going to have a huge loss on antenna gain due to pointing error.

Problem 3. Suppose we receive the analog signal

ra(t) = Acos(2x f.t + 0).

Here the amplitude A is a constant but we do not know its value.
do know that the frequency f. is 200 Hz and the phase 6 is 7/4. We can
follow the steps below to estimate the value of A. Assume for purposes of
calculation that the value of A 1s 5, 1.e., use A = 5 in the above signal in

your calculations.

S1. Multiply r.(t) by z(t), where z(t) = cos(2n f.t + w/4). Call the result

y(t).

S2. Integrate y(t) from 0 to T and multiply the result by 2/T. The result

1s your estimate of A.

We



a. Follow the 2 steps above and estimate A using 7' = 6, 8, 16, 26, 126
msec.

b. Explain why following the 2 steps above will give the exact answer for

AasT — oo.

c. Determine (analytically) the finite values of T' that will make your
estimate for A exact and using the smallest such T follow the two steps
above again to estimate A.
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Problem 4. Suppose we receive the analog signal

ro(t) = Acos(27200t + )
and sample 1t at 1600 Hz to get the digital signal

r(n) = Acos(0.25mn + 0).



Here the amplitude A is a constant but we do not know its value. Further-
more, we do not know the # phase value. We can follow the steps below to
estimate the value of A. Assume for purposes of calculation that the value
of Ais 5 and 6 = w/4, i.e., use A =5 and # = 7/4 in the above signal in
your calculations.

S1. Multiply »(n) by z1(n) and zs(n), where z1(n) = cos(0.25mn) and

xro(n) = sin(0.257n). Call the results y;(n) and ya(n), respectively.

S2. Simply add up the values of yi(n) and yo(n) for n =0,1,2,... N — 1
(some N) and take the average of each (divide by N) and then multiply
the averages by 2. Call the results z; and z9, respectively.

S3. Compute /27 + z3. This is the estimate of A.

a. Follow the 3 steps above and estimate A using N = 5,11, 19.

b. Explain why following the 3 steps above will give the exact answer for
Aas N — oc.

C. Determine (analytically) the finite values of N that will make your
estimate for A exact and using the smallest such N follow the 3 steps
above again to estimate A.
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Problem 5. Use Matlab. Suppose we receive the analog signal
rq(t) = Acos(27200t + 6)
and sample it at 1600 Hz to get the digital signal
r(n) = Acos(0.25mn + 6).
Suppose now we quantize the digital signal to get
rq(n) = Round [A cos(0.25mn + 6)]

where ‘Round’ means the samples are rounded to the nearest integer. The

amplitude A i1s a constant but we do not know its value. Furthermore, we

do not know that the phase 1s # = 7w/4. We can follow the steps below to

estimate the value of A. [For purposes of calculation let A actually have the

value 10.]

S1. Multiply r4(n) by z1(n) and z2(n), where z1(n) = cos(0.257n) and
xa(n) = sin(0.257n). Call the results y;(n) and ys(n), respectively.

S2. Simply add up the values of y;(n) and ys(n) for n =0,1,2,... N — 1
(some N) and take the average of each (divide by N) and then multiply
the averages by 2. Call the results z; and z,, respectively.

S3. Compute \/z7 + z2. This is the estimate of A.
a. Follow the 3 steps above and estimate A using N = 4.
b. Repeat (a) for N = 8.

c. What values of N makes your estimate of A exact if the input samples
were not quantized.

d. Based on your answers to parts (a) and (b) what would your estimate
for A be if N 1s 4000. Explain why the estimate is not becoming exact
even for very large N.

e. If we change the sampling frequency to 1600 x /3 Hz will our estimate
for A become exact for large N7 If so, explain why and also show that
the estimate becomes exact using Matlab.

Solution:
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c. From problem 5, any that is a multiple b4 gives us the exact estimai®A if the
input sampés weren't quantized by the round function.



d. However, due to the fact that € is peroidic (with peroid 1), the
guantization error keeps adding up when we perform summaticorder to obtain a
better estimate of Awe need to make the sequesi ¢ aperiodic.

e. Since we prevemt € from being periodic, the estimate ofwAll everiually

approachthe true A as we wash out the error by increasing N
12 : .
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